Numerical evaluation of multiple integrals. II
Authors:
Preston C. Hammer and Arthur H. Stroud
Journal:
Math. Comp. 12 (1958), 272-280
MSC:
Primary 65.00
DOI:
https://doi.org/10.1090/S0025-5718-1958-0102176-6
MathSciNet review:
0102176
Full-text PDF Free Access
References | Similar Articles | Additional Information
- [1] Preston C. Hammer and A. Wayne Wymore, Numerical evaluation of multiple integrals. I, Math. Tables Aids Comput. 11 (1957), 59–67. MR 87220, https://doi.org/10.1090/S0025-5718-1957-0087220-6
- [2] C. C. MacDuffee, The Theory of Matrices, Chelsea, New York, 1946, reprint.
- [3] G. W. Tyler, Numerical integration of functions of several variables, Canad. J. Math. 5 (1953), 393–412. MR 56379, https://doi.org/10.4153/cjm-1953-044-1
- [4] A. H. Stroud, Remarks on the disposition of points in numerical integration formulas, Math. Tables Aids Comput. 11 (1957), 257–261. MR 93911, https://doi.org/10.1090/S0025-5718-1957-0093911-3
- [5] William H. Peirce, Numerical integration over the planar annulus, J. Soc. Indust. Appl. Math. 5 (1957), 66–73. MR 90122
- [6] William H. Peirce, Numerical integration over the spherical shell, Math. Tables Aids Comput. 11 (1957), 244–249. MR 93910, https://doi.org/10.1090/S0025-5718-1957-0093910-1
- [7] Preston C. Hammer and Arthur H. Stroud, Numerical integration over simplexes, Math. Tables Aids Comput. 10 (1956), 137–139. MR 86390, https://doi.org/10.1090/S0025-5718-1956-0086390-2
- [8] P. C. Hammer, O. J. Marlowe, and A. H. Stroud, Numerical integration over simplexes and cones, Math. Tables Aids Comput. 10 (1956), 130–137. MR 86389, https://doi.org/10.1090/S0025-5718-1956-0086389-6
- [9] Herbert Fishman, Numerical integration constants, Math. Tables Aids Comput. 11 (1957), 1–9. MR 86391, https://doi.org/10.1090/S0025-5718-1957-0086391-5
- [10] H. Bourget, ``Sur une extension de la méthode de quadrature de Gauss,'' Hebdomadaires des séances de l'Académie des Sciences, Comptes Rendus, v. 126, 1898, p. 634-636.
- [11] P. Appell & J. Kampé de Fériet, ``Fonctions hyper géométriques et hypersphériques; Polynomes d'Hermite,'' Gauthier-Villars, Paris, 1926.
- [12] A. Angelescu, ``Sur des polynomes generalisant les polynomes de Legendre et d'Hermite et sur le calcul approché des intégrales multiples,'' Thesis, Paris, 1916.
- [13] Henry C. Thacher Jr., Optimum quadrature formulas in 𝑠 dimensions, Math. Tables Aids Comput. 11 (1957), 189–194. MR 90869, https://doi.org/10.1090/S0025-5718-1957-0090869-8
- [14] R. Lauffer, Interpolation mehrfacher Integrale, Arch. Math. 6 (1955), 159–164 (German). MR 68307, https://doi.org/10.1007/BF01900222
Retrieve articles in Mathematics of Computation with MSC: 65.00
Retrieve articles in all journals with MSC: 65.00
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1958-0102176-6
Article copyright:
© Copyright 1958
American Mathematical Society