Tables of abcissas and weights for numerical evaluation of integrals of the form $\int _{0}^{\infty } e^{-x}x^{n}f(x) dx$
HTML articles powered by AMS MathViewer
- by Philip Rabinowitz and George Weiss PDF
- Math. Comp. 13 (1959), 285-294 Request permission
References
-
D. Burnett, “The determinations of intermolecular forces in gases from their viscosity,” Proc. Camb. Phil. Soc., v. 33, 1937, p. 363.
Max Born & Kun Huang, The Dynamical Theory of Crystal Lattices, Oxford Clarendon Press, 1954, p. 23.
- Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vols. I, II, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman. MR 0058756
- Herbert E. Salzer and Ruth Zucker, Table of the zeros and weight factors of the first fifteen Laguerre polynomials, Bull. Amer. Math. Soc. 55 (1949), 1004–1012. MR 32191, DOI 10.1090/S0002-9904-1949-09327-8 D. Burnett, “The numerical calculation of $\int _0^\infty {{x^m}{e^{ - x}}f(x)dx}$,” Proc. Camb. Phil. Soc., v. 33, 1937, p. 359.
- Max Born and Mary Bradburn, The thermodynamics of crystal lattices. II. Calculation of certain lattice sums occurring in thermodynamics, Proc. Cambridge Philos. Soc. 39 (1943), 104–113. MR 7876, DOI 10.1017/s030500410001776x
- G. C. Benson and H. P. Schreiber, A method for the evaluation of some lattice sums occurring in calculations of physical properties of crystals. II, Canad. J. Phys. 33 (1955), 529–540. MR 72533, DOI 10.1139/p55-064
- J. W. Head and W. Wilson, Proctor. Laguerre functions: Tables and properties, Proc. Inst. Elec. Engrs. C. 103 (1956), 428–440. MR 86414, DOI 10.1049/pi-c.1956.0056 Gábor Szego, “Orthogonal polynomials,” Am. Math. Soc. Colloquium Publication, Am. Math. Soc., New York, v. 23, 1939, p. 125.
- G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110
Additional Information
- © Copyright 1959 American Mathematical Society
- Journal: Math. Comp. 13 (1959), 285-294
- MSC: Primary 65.00
- DOI: https://doi.org/10.1090/S0025-5718-1959-0107992-3
- MathSciNet review: 0107992