A NOTE ON THE SOLUTION OF QUARTIC EQUATIONS

For any quartic equation with real coefficients,

\[X^4 + AX^3 + BX^2 + CX + D = 0, \]

the following condensation of the customary algebraic solution is recommended as quickest and easiest for the computer to follow (no mental effort required). It works in every exceptional case.

Received December 22, 1959.
Denote the four roots of (1), by \(X_1, X_2, X_3,\) and \(X_4\). With the aid of [1], solve the “resolvent cubic equation” \(ax^3 + bx^2 + cx + d = 0\) for the real root \(x_1\) only, where

\[
(2) \quad a = 1, \quad b = -B, \quad c = AC - 4D, \quad \text{and} \quad d = D(4B - A^2) - C^2.
\]

Find

\[
(3) \quad m = +\sqrt{\frac{1}{4}A^2 - B + x_1}, \quad n = \frac{Ax_1 - 2C}{4m}.
\]

If \(m = 0\), take \(n = \sqrt{\frac{1}{4}x_1^2 - D}\) and proceed according to the following Case I or Case II, depending upon whether \(m\) is real or imaginary.

Case I: If \(m\) is real, let \((\frac{1}{4}A^2 - x_1 - B) = a, 4n - Am = \beta, \sqrt{\alpha + \beta} = \gamma, \sqrt{\alpha - \beta} = \delta,\) and finally

\[
\begin{align*}
X_1 &= -\frac{1}{2}A + m + \gamma, \\
X_2 &= -\frac{1}{2}A - m + \delta, \\
X_3 &= -\frac{1}{2}A + m - \gamma, \\
X_4 &= -\frac{1}{2}A - m - \delta.
\end{align*}
\]

Case II: If \(m\) is imaginary, say \(m = im'\), then \(n\) is also imaginary, say \(n = in'\). Let

\[
(\frac{1}{4}A^2 - x_1 - B) = a, \quad 4n' - Am' = \beta, \quad +\sqrt{\alpha^2 + \beta^2} = \rho, \quad \sqrt{\frac{\alpha + \rho}{2}} = \gamma, \quad \frac{\beta}{2\gamma} = \delta,
\]

and finally

\[
\begin{align*}
X_1 &= -\frac{1}{2}A + \gamma + i(m' + \delta), \\
X_2 &= \bar{X}_1, \text{ the complex conjugate of } X_1, \\
X_3 &= -\frac{1}{2}A - \gamma + i(m' - \delta) \\
X_4 &= \bar{X}_3, \text{ the complex conjugate of } X_3.
\end{align*}
\]

If \(\gamma = 0\), we must have \(\alpha = -\alpha', \alpha' \geq 0,\) and formula (4II) still holds provided that in it we replace \(\delta\) by \(+\sqrt{\alpha'}\).

As an example consider the quartic equation \(X^4 + X^3 + X^2 + X + 1 = 0\), where \(A = B = C = D = 1\), so that from (2) the resolvent cubic equation is \(x^3 - x^2 - 3x + 2 = 0\). From [1] we find \(x_1 = 0.61803 400.\) From (3), \(m = +\sqrt{-0.13196 600} = +0.36327 125i,\) so that \(m' = +0.36327 125.\) Then \(n = -1.38196 600 = +0.95105 655i,\) so that \(n' = +0.95105 655.\) Proceeding according to Case II, \(\alpha = -1.11803 400, \beta = 3.44095 495, \rho = 3.61803 41, \gamma = 1.11803 40\) and \(\delta = 1.53884 18.\) Then from (4II) we obtain \(X_1 = 0.30901 70 + 0.95105 655i, X_2 = \bar{X}_1 = 0.30901 70 - 0.95105 655i, X_3 = -0.80901 70 - 0.58778 53i\) and
A CONJUGATE FACTOR METHOD FOR SOLUTION OF A CUBIC

By D. A. Maguía

1. Introduction. This paper gives a simple method for computing the real roots of the reduced cubic equation with real coefficients,

\[x^3 + Ax + B = 0, \]

having roots \(a, b, c \). We assume \(a \) to be real, since every cubic equation has at least one real root.

The method consists in factoring \(B \), and setting one factor equal to \(\pm \sqrt{m} \), the other \(n \). For all pairs \(m, n \) such that \(m + n = -A \), \(\pm \sqrt{m} \) is a root. If no such pair exists, a method of interpolation is shown.

2. Proof of Method. The reduced cubic equation (1) can be transformed, by using the relations between the roots and coefficients, into a complete cubic,

\[p^3 + 6Ap^2 + 9A^2p + 4A^3 + 27B^2 = 0, \]

where

\[p = (-3a^2 - 4A). \]

Equation (2) can be written in the form:

\[(p + A)^2(-p - 4A) = 27B^2 \]

or

\[\frac{(p + A)}{3} \sqrt{\frac{(-p - 4A)}{3}} = \pm B. \]

Let

\[m = \frac{-p - 4A}{3} \quad \text{and} \quad n = \frac{p + A}{3} \]

and

\[m + n = -A. \]

Received September 21, 1959; in revised form, December 22, 1959.