The congruence $2^{p-1}\equiv 1(\textrm {mod}p^{2})$ for $p<100,000$
HTML articles powered by AMS MathViewer
- by Sidney Kravitz PDF
- Math. Comp. 14 (1960), 378-378 Request permission
References
-
C. E. Frรถberg, โSome Computations of Wilson and Fermat Remainders,โ MTAC, v. 12, 1958, p. 281.
W. Meissner, โUber die Teilbarkeit von ${2^p}\, - \,2$ durch das Quadrat der Primzahl p = 1093,โ Akad. d. Wiss, Berlin, Sitzungsb., v. 35, 1913, p. 663-667
N. G. W. H. Beeger, โOn a new case of the congruence ${2^{p - 1}}\, \equiv \,1\,\pmod {p^2}$,โ Messenger Math., v. 51, 1922, p. 149-150.
Additional Information
- © Copyright 1960 American Mathematical Society
- Journal: Math. Comp. 14 (1960), 378-378
- MSC: Primary 10.00; Secondary 65.00
- DOI: https://doi.org/10.1090/S0025-5718-1960-0121334-7
- MathSciNet review: 0121334