Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Reviews and Descriptions of Tables and Books
HTML articles powered by AMS MathViewer

by PDF
Math. Comp. 15 (1961), 200-224 Request permission
    E. Landau, Aus der elementaren Zahlentheorie, Chelsea Publishing Co., New York, 1946, p. 128.
  • I. P. Natanson, Konstruktive Funktionentheorie, Akademie-Verlag, Berlin, 1955 (German). MR 0069915
  • NBS Applied Mathematics Series, No. 48, Fractional Factorial Experiment Designs for Factors at Two Levels, U. S. Gov. Printing Office, Washington, D. C., 1957 (MTAC Review 7, v. 12, 1958, p. 66).
  • E. S. Pearson and H. O. Hartley (eds.), Biometrika tables for statisticians. Vol. I, Cambridge, at the University Press, 1954. MR 0062983
  • Theodore E. Sterne, Some remarks on confidence or fiducial limits, Biometrika 41 (1954), 275–278. MR 62387, DOI 10.1093/biomet/41.1-2.275
  • A. Hald, Statistical theory with engineering applications, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1952. MR 0049514
  • W. L. Stevens, Fiducial limits of the parameter of a discontinuous distribution, Biometrika 37 (1950), 117–129. MR 35955, DOI 10.1093/biomet/37.1-2.117
  • S. S. Wilks, “Certain generalizations in the analysis of variance,” Biometrika, v. 24, 1932, p. 471-494. E. S. Pearson & S. S. Wilks, “Methods of statistical analysis appropriate for k samples of two variables,” Biometrika, v. 25, 1933, p. 353-378. Statistical Research Group, Columbia University, Selected Techniques of Statistical Analysis, McGraw-Hill Book Co., New York, 1947, chap. 3, p. 111-184. J. Neyman, Editor, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Univ. California Press, Berkeley & Los Angeles, 1951, p. 23-41.
  • F. G. Foster and D. H. Rees, Upper percentage points of the generalized beta distribution. I, Biometrika 44 (1957), 237–247. MR 86462, DOI 10.1093/biomet/44.1-2.237
  • F. G. Foster, Upper percentage points of the generalized beta distribution. II, Biometrika 44 (1957), 441–453. MR 90199, DOI 10.1093/biomet/44.3-4.441
  • F. G. Foster, Upper percentage points of the generalized beta distribution. III, Biometrika 45 (1958), 492–503. MR 100366, DOI 10.1093/biomet/45.3-4.492
  • K. C. S. Pillai, Concise Tables for Statisticians, Statistical Center, Univ. of the Philippines, Manila, 1957.
  • K. C. Sreedharan Pillai and Celia G. Bantegui, On the distribution of the largest of six roots of a matrix in multivariate analysis, Biometrika 46 (1959), no. 1-2, 237–240. MR 102152, DOI 10.1093/biomet/46.1-2.237
  • Herman A. O. Wold, Random Normal Deviates. Tracts for Computers, no. 25, Cambridge Univ. Press, 1954.
  • A million random digits with $100,000$ normal deviates, The Free Press, Glencoe, Ill., 1955. By the RAND Corporation. MR 0067568
  • National Research Council of Canada, Division of Atomic Energy, Report MT-1, The Functions ${E_n}(x) = \int _1^\infty {{e^{ - xu}}{u^{ - n}}du}$, Chalk River, Ontario, December 1946. Reproduced in Nat. Bur. Standards Appl. Math. Ser. No. 37, Tables of Functions and of Zeros of Functions, 1954, p. 57-111. See RMT 392, MTAC, v. 2, 1946-47, p. 272; and RMT 104, MTAC, v. 10, 1956, p. 249-250. L. Fox, The Use and Construction of Mathematical Tables, National Physical Laboratory Mathematical Tables, v. 1, London, 1956. See RMT 8, MTAC, v. 13, 1959, p. 61-64. L. Fox, Tables of Everett Interpolation Coefficients, National Physical Laboratory Mathematical Tables, v. 2, London, 1958.
Additional Information
  • © Copyright 1961 American Mathematical Society
  • Journal: Math. Comp. 15 (1961), 200-224
  • DOI: