Chebyshev approximations to the Gamma function
HTML articles powered by AMS MathViewer
- by Helmut Werner and Robert Collinge PDF
- Math. Comp. 15 (1961), 195-197 Request permission
References
- Eduard L. Stiefel, Numerical methods of Tchebycheff approximation, On numerical approximation. Proceedings of a Symposium, Madison, April 21-23, 1958, Publication of the Mathematics Research Center, U.S. Army, the University of Wisconsin, no. 1, University of Wisconsin Press, Madison, Wis., 1959, pp. 217–232. Edited by R. E. Langer. MR 0107961 E. T. Whittaker & G. N. Watson, A Course of Modern Analysis, Cambridge, 1958, p. 251-253.
- M. E. Sherry and S. Fulda, Calculation of Gamma functions to high accuracy, Math. Tables Aids Comput. 13 (1959), 314–315. MR 108891, DOI 10.1090/S0025-5718-1959-0108891-3 H. S. Uhler, “$\log \pi$ and other basic constants,” Proc. Nat. Acad. Sci. U. S. A., v. 24, 1938, p. 23-30.
- Horace S. Uhler, The coefficients of Stirling’s series for $\log \Gamma (x)$, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 59–62. MR 6225, DOI 10.1073/pnas.28.2.59
Additional Information
- © Copyright 1961 American Mathematical Society
- Journal: Math. Comp. 15 (1961), 195-197
- DOI: https://doi.org/10.1090/S0025-5718-61-99220-1