Expansions of hypergeometric functions in hypergeometric functions
HTML articles powered by AMS MathViewer
- by Jerry L. Fields and Jet Wimp PDF
- Math. Comp. 15 (1961), 390-395 Request permission
Abstract:
In [1] Luke gave an expansion of the confluent hypergeometric function in terms of the modified Bessel functions ${I_v}(z)$. The existence of other, similar expansions implied that more general expansions might exist. Such was the case. Here multiplication type expansions of low-order hypergeometric functions in terms of other hypergeometric functions are generalized by Laplace transform techniques.References
- Yudell L. Luke, Expansion of the confluent hypergeometric function in series of Bessel functions, Math. Tables Aids Comput. 13 (1959), 261–271. MR 107027, DOI 10.1090/S0025-5718-1959-0107027-2 A. Erdélyi, W. Magnus, F. Oberhettinger & F. G. Tricomi, Higher Transcendental Functions, McGraw-Hill Book Company, Inc., 1953, Vol. 1. Hereafter in this list, we use the abbreviation H.T.F.
- Yudell L. Luke and Richard L. Coleman, Expansion of hypergeometric functions in series of other hypergeometric functions, Math. Comp. 15 (1961), 233–237. MR 123745, DOI 10.1090/S0025-5718-1961-0123745-3 A. Erdélyi, W. Magnus, F. Oberhettinger & F. G. Tricomi, Tables of Integral Transforms, Vol. 1, McGraw-Hill Book Company, Inc., 1954.
- E. D. Rainville, Certain generating functions and associated polynomials, Amer. Math. Monthly 52 (1945), 239–250. MR 11751, DOI 10.2307/2305876
- T. W. Chaundy, An extension of hypergeometric functions. I, Quart. J. Math. Oxford Ser. 14 (1943), 55–78. MR 10749, DOI 10.1093/qmath/os-14.1.55 C. S. Meijer, “Expansion theorems for the G-function,” Indag. Math., v. 14-17, 1952-55. H.T.F., Vol. 2. J. L. Fields & Y. L. Luke, “Asymptotic expansions of a class of hypergeometric polynomials with respect to the order,” Midwest Research Institute Technical Report, July 1, 1959.
- G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110
Additional Information
- © Copyright 1961 American Mathematical Society
- Journal: Math. Comp. 15 (1961), 390-395
- MSC: Primary 33.20
- DOI: https://doi.org/10.1090/S0025-5718-1961-0125992-3
- MathSciNet review: 0125992