An improved eigenvalue corrector formula for solving the Schrödinger equation for central fields
Author:
J. W. Cooley
Journal:
Math. Comp. 15 (1961), 363-374
MSC:
Primary 65.66
DOI:
https://doi.org/10.1090/S0025-5718-1961-0129566-X
MathSciNet review:
0129566
Full-text PDF Free Access
References | Similar Articles | Additional Information
- Douglas R. Hartree, The calculation of atomic structures, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1957. MR 0090408 E. C. Ridley, “The self-consistent field for $M{o^ + }$,” Proc. Cambridge Philos. Soc. v. 51, 1955, p. 702.
- R. A. Rubenstein, Marjorie Huse, and Stefan Machlup, Numerical solution of the Schroedinger equation for central fields, Math. Tables Aids Comput. 10 (1956), 30–31. MR 76458, DOI https://doi.org/10.1090/S0025-5718-1956-0076458-9
- Sherwood Skillman, Efficient method for solving atomic Schroedinger’s equation, Math. Tables Aids Comput. 13 (1959), 299–302. MR 108291, DOI https://doi.org/10.1090/S0025-5718-1959-0108291-6 R. de L. Kronig & I. I. Rabi, “The symmetrical top in the undulatory mechanics,” Phys. Rev., v. 29, 1927, p. 262. B. Numerov, Publs. observatoire central astrophys. Russ., v. 2, 1933, p. 188. P. O. Löwdin, An Elementary Iteration-Variation Procedure for Solving the Schroedinger Equation, Technical Note No. 11, Quantum Chemistry Group, Uppsala University, Uppsala, Sweden, 1958. P. M. Morse, “Diatomic molecules according to the wave mechanics II. Vibrational levels,” Phys. Rev., v. 34, 1929, p. 57.
Retrieve articles in Mathematics of Computation with MSC: 65.66
Retrieve articles in all journals with MSC: 65.66
Additional Information
Article copyright:
© Copyright 1961
American Mathematical Society