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interpretive routine for the LGP-30, and (23), arccosh 250.001 (i.e. In 500) was

found correct to 4 decimal places with k = 5 (6 square roots) and to 11 places with

k = 10 (11 square roots).

The convergence of the sequence of approximations is only first order. At some

cost in programming effort, it would be clearly possible to increase the convergence

by one of the standard extrapolation techniques for accelerating the approach to

the limit. However, the excellent convergence already present makes it unlikely

that this device would be worthwhile unless the need for high accuracy was such

that it was essential to keep k as low as possible.

A special case of (13), with x = — 1, has been known for a long time. This

expansion, which has the limit tt, can be obtained as one-half the perimeter of a

2*-gon inscribed in a circle of unit radius [2]. However, the general case, and the

expansions obtainable by retaining the fourth-degree terms in the series for cos x

and cosh x appear to be new.
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An Eigenvalue Problem Arising In Mass And
Heat Transfer Studies

By J. S. Dranoff

1. Introduction. In a recent paper [1], S. Katz has considered the problem of

catalytic chemical reactions occurring on the inside surface of a cylindrical tube.

For the case of laminar flow of reactant through such a tube, he has shown how one

may generate basic kinetic data for the reaction in question from easily made over-

all conversion measurements. The interested reader is referred to the original paper

for the details of this analysis and its application.

In order to make use of Katz's analysis, one must have on hand the solution to

the following Sturm-Liouville type eigenvalue problem :

J + X„4x(l - x2)<t>n{x) =0, 0 ¿ x ^ 1

<f>n(x)    regular at    x = 0

*-'(l) = 0

where the <£„(x) are the eigensolutions and the A„ are the eigenvalues, with n =

0, 1, 2, • • • . The first boundary condition leads, as in the case of Bessel's functions,

to the condition <j>n'(0) = 0.
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In addition to 4>n(x) and X„ , it is also necessary to have available the numerical

values of the following integrals in order to complete the analysis.

(2)
/l     2— </>„(x)4x(l — x2) dx

.i

(3)
, /   2x4>„(x) dx
»n = Jo

(4) Nn=  f *n2(x)4x(l - x2) dx.
Jo

The reader may recognize that a„ and bn are the coefficients in the expansion of

the functions x2/2 and 2x/4x(l — x2), respectively, in a series of the eigenfunctions

4>n{x), with a weighting function of 4x(l — x2). Further, the integral Nn may be

regarded as a normalization factor.

It should be noted that problems similar to (1), but with alternate boundary

conditions, have been studied by many investigators in the past. The earliest work,

which dates back to 1883, seems to be that of Graetz [2], who considered the case

in which the second boundary condition of (1) is #„(1) = 1. Most recently, Brown

[3] recalculated the solutions to Graetz's problem by numerical techniques using a

digital computer. However, no solutions pertinent to the present boundary condi-

tions are available. Hence, the solution to the problem (1) and the determination

of the integrals (2), (3), and (4) was the objective of this work. Since no complete

analytic solution was possible, it was decided to solve the problem by numerical

means using a Burroughs Datatron 205 digital computer. In addition, an effort

was also made to obtain an asymptotic analytic representation of the solutions to

the eigenvalue problem.

The normalization <f>n(0) = 1.0, for every n, was adopted for convenience in

numerical calculations, rather than Nn = 1, as chosen in [1]. Examination of the

defining differential equation in (1) shows that any eigensolution may be multiplied

by an arbitrary scale factor and still remain a solution. Thus, it is perfectly legiti-

mate to make this normalization.

2. The Asymptotic Solution. An asymptotic solution to the problem (1) with

the specification that <t>„(0) = 1.0 was attempted for large n. The method used was

exactly that used by Sellars, Tribus and Klein [4] in dealing with the Graetz prob-

lem. Their procedure was followed except as required by the different boundary

conditions of ( 1 ). The result was a three-piece analytic approximation to the eigen-

function <f>n(x) and an equation for estimating the eigenvalues X„ .

The actual solutions obtained were as follows:

(5) <t>n(x) = J0(2x\/%t) for x near 0

0n(x)
cos [x(l — x2)l/2\/X^ + -\/\n arcsin x — tt/4¡\

(6) vta„ x   (1 — x )

for   0 < x < 1.0

(7) <t>n(x) = (-l)VtO - x)1/V_1/3(f(l - xf'V^Q for x near 1.0
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where the eigenvalues may be approximated by the expression

(8) X„ = 4(n + 1/3)2.

These equations are valuable for checking the results of subsequent numerical

solutions. In particular, (8) is most useful in predicting the approximate location

of the eigenvalues X„ .

Although it is difficult to predict the accuracy of these asymptotic expressions,

one may expect them to be quite good for n ^ 5, judging from the results of Sellars,

et al.

3. The Numerical Solution. The numerical solution of (1) was carried out by a

trial-and-error procedure. A value of X„ was assumed, and the differential equation

was integrated numerically from x = 0.0 to x = 1.0, using a standard Runge-Kutta

method [5]. The initial conditions #„(0) = 1.0 and 4>„'(0) = 0 were assumed, as

discussed earlier. If the resultant solution satisfied the criterion that #n'(l) = 0.0,

it was deemed an eigensolution of the problem and the corresponding X„ a true

eigenvalue. If this condition was not satisfied, a new value of X„ was chosen and the

process repeated until successive values of X„ agreed within six (6) significant

figures. (It should be noted that all computations were done in automatic floating

point form using ten (10) decimal digit words, consisting of a two (2) digit charac-

teristic exponent and an eight (8) digit mantissa.)

Successive estimates of X„ were made according to the following formula:

(9) X„(i+1) = Xn(<) - t*-'(1>](0
m{l>

where the superscript indicates the "ith" iteration and the value of m is given by

Mm m _ [^(D1W - [¿„'(Of-"

An An

Equations (9) and (10) represent a simple linear approximation to the <j>n'(x) — X„

relationship near x = 1.0. Since this method requires the results of two previous

iterations in order to estimate a new value of X„ , it could not be applied until the

third iteration. The second approximation to X„ was therefore found by arbitrarily

increasing the starting value by 0.5. By using the predictions of equation (8) to

estimate X„a), it was normally possible to make the calculations converge within

four or five iterations.

A fixed interval size was used in each integration. The final value was chosen

such that a smaller interval would not produce any change within six (6) significant

figures in the calculated eigenfunctions and eigenvalues. The number of intervals

was varied in the calculation of successive eigenfunctions, but was always greater

than 25 n. This criterion was established in order to provide for the increasing

complexity of the <t>n(x) within the interval [0, 1] with higher values of n.

When the eigenvalues and corresponding eigensolutions were obtained, the

integrals (2), (3), and (4) were evaluated by numerical integration on the com-

puter, using a standard Simpson's rule integration procedure.

4. Results. The numerical solution described above was carried out for n from

1 to 20. Table 1 presents the results of these calculations in terms of the eigenvalues,
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Table 1

Numerically Calculated Eigenvalues, Eigenfunctions, and Derivatives

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

x»

6.
20
43.
74.

112
159,
213.
276,
347.
425.
512.
607.
709.
820.
938.

1065.
1200.
1342.
1493.
1652.

41990
9654
5417
1341
737
347
963
583
206
835
462
093
725
360
997
63
27
92
56
20

*n(l)

-0.492517

+0.395509
-0.345874

+0.314047
-0.291253

+0.273810
-0.259852

+0.248329
-0.238591

+0.230189
-0.222865

+0.216373
-0.210568

+0.205334
-0.200580

+0.196234
-0.192237

+0.188546
-0.185120

+0.181929

*»' (i)

-1.0
-4.0

+2.3
-3.7

+ 1.5
-1.5

+3.5
-7.5

+4.5
-2.5

+5.0
-9.6
-7.6

+5.3
+ 1.2
-5.5

+2.1
-3.2

+ 1.5
+ 1.8

X
X
X
X

10-io

io-9
10"'
10-7

x io-6
x io-6
x io-6
x io-5
x io-7
x io-4
x io-7
x io-8
x io-7
x io-7
x io-7
x io-6
x io-5
x io-6
x io-5
x io-6

Ax*

0.02
0.0100
0.0050
0.0050
0.0050
0.0050
0.0025
0.0025
0.0025
0.0025
0.0025
0.0025
0.0020
0.0020
0.0020
0.0020
0.0020
0.0020
0.0020
0.0020

* The number of steps used in the numerical integrations is equal to 1.0/Ax.

Table 2

The Coefficient and Normalization Integrals

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

-0.243568

+0.124300
-0.080695

+0.0585046
-0.0452500

+0.0365248
-0.0303940

+0.0258748
-0.0224156

+0.0197100
-0.0175137

+0.0157222
-0.0142302

+0.0129707
-0.0118950

+0.0109669
-0.0101598

+0.00945062
-0.00882477

+0.00826766

»n

-1.02664

+ 1.06525
-1.08411

+ 1.09553
-1.10329

+ 1.10895
-1.11331

+ 1.11677
-1.11957

+ 1.12198
-1.12392

+ 1.12564
-1.12714

+ 1.12847
-1.12964

+ 1.13069
-1.13165

+ 1.13250
-1.13229

+ 1.13400

A7„

+0.190138
+0.107731
+0.075286
+0.0578066
+0.0469413
+0.0395161
+0.0341194
+0.0300203
+0.0268008
+0.0242052
+0.0220681
+0.0202777
+0.0187560
+0.0174469
+0.016309
+0.0153098
+0.0144264
+0.0136393
+0.0129337
+0.0122975
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and the eigenfunctions and their derivatives evaluated at x = 1.0. In addition, the

size of the integration interval used in the numerical calculations has also been

tabulated for reference. Note that the leading eigensolution for n = 0, namely

Xo = 0,    <txi(x) = 1, has not been tabulated.

More extensive values of the eigenfunctions are shown in Table 4 for intervals

of x = 0.1. Complete tables are available through the Engineering Research Section

of the American Cyanamid Company, Stamford, Connecticut.

The integrals (2), (3), and (4) were evaluated for each of the above functions

and are presented in Table 2. The data of Tables 1 and 2 may now be used to

evaluate the function

(ID M{6)  =  1 +  £ (Xndn + 6„)*»(l)e"
■KO

which is equation (48) of [1].

The values of oo, bo, and No have not been tabulated. These may be readily

seen to equal £, 1, and 1, respectively, by examination of equations (2), (3), and (4).

Some idea of the validity of the asymptotic expansion described above can be

obtained by comparing the calculated and predicted values of the eigenvalues as

determined by numerical integration and equation (8), respectively. These data

are shown in Table 3. It is apparent that the asymptotic expression for the eigen-

values is quite a good approximation for n ^ 5. It is assumed that this agreement

holds for the asymptotic forms of the eigensolution as well, although no specific

test has been made of this point as yet.

Table 3

Test of the Asymptotic Expression for the Eigenvalues

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

X (Calculated)

6
'20

43
74

112
159
213
276
347
425
512
607
709
820
938

1065
1200
1342
1493
1652

.41990

.9654

.5417

.1341

.737

.347

.963

.583

.206

.835

.462

.093

.725

.360

.997

.63

.25

.92

.56

.20

X (Predicted by Equation 8)

7.
21
44,
75

113
160
215
277,
348,
427.
513.
608.
711.
821.
940.

1067.
1201.
1344.
1495.
1653.

11111
7778
4444
1111
7778
444
111
778
444
111
778
444
111
778
444
11
78
44
11
78

«pred/Acal

0.9028
0.9627
0.9797
0.9870
0.9909
0.9932
0.9947
0.9957
0.9964
0.9970
0.9974
0.9978
0.9981
0.9983
0.9985
0.9986
0.9987
0.9989
0.9990
0.9990
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The recent work of Siegel, Sparrow and Hallman [6] has just come to the

attention of the author. These workers have considered this problem in the heat

transfer context. They report values of the eigenfunctions and eigenvalues which

are in excellent agreement with the more extensive data of the present work.
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Efficient Continued Fraction Approximations
To Elementary Functions

By Kurt Spielberg

1. Introduction. This paper describes an application and extension of the work

of H. J. Maehly [1] on the rational approximation of arc tan x, and of E. G. Kog-

betliantz [2], who developed Maehly's procedure so as to be applicable to the com-

puter programming of elementary transcendental functions.

It is to be shown here that certain modifications, such as the introduction of

terms which are easily computed on specific computers, lead to considerable im-

provements. In particular, the application of the modified method to several ele-

mentary functions will be described and corresponding final results will be given.

Some of these approximations have been used with great success to develop sub-

routines for the IBM 704 and 709 computers. Our experience indicates that the

method of Maehly and Kogbetliantz, as modified below, is superior to other current

numerical procedures.

2. The Modified Method of Maehly and Kogbetliantz. The basic idea made use

of by H. J. Maehly in connection with/(x) = arc tan x is to approximate the func-

tion f(x) by a ratio of two Chebyshev sums of order k
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