Acceleration techniques for iterated vector and matrix problems
Author:
P. Wynn
Journal:
Math. Comp. 16 (1962), 301-322
MSC:
Primary 65.10
DOI:
https://doi.org/10.1090/S0025-5718-1962-0145647-X
MathSciNet review:
0145647
Full-text PDF Free Access
References | Similar Articles | Additional Information
- [1] P. Wynn, On a device for computing the 𝑒_{𝑚}(𝑆_{𝑛}) tranformation, Math. Tables Aids Comput. 10 (1956), 91–96. MR 84056, https://doi.org/10.1090/S0025-5718-1956-0084056-6
- [2] P. Wynn, The rational approximation of functions which are formally defined by a power series expansion, Math. Comput. 14 (1960), 147–186. MR 0116457, https://doi.org/10.1090/S0025-5718-1960-0116457-2
- [3] Daniel Shanks, Non-linear transformations of divergent and slowly convergent sequences, J. Math. and Phys. 34 (1955), 1–42. MR 68901, https://doi.org/10.1002/sapm19553411
- [4] Thomas Jan Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse Math. (6) 4 (1995), no. 3, J76–J122 (French). Reprint of Ann. Fac. Sci. Toulouse 8 (1894), J76–J122. MR 1607517, https://doi.org/10.5802/afst.808
- [5] P. Wynn, The numerical transformation of slowly convergent series by methods of comparison. I, Chiffres 4 (1961), 177–210. MR 162350
- [6] P. Wynn, On repeated application of the 𝜖-algorithm, Chiffres 4 (1961), 19–22. MR 149145
- [7]
F. L. Bauer, Connections between the q-d algorithm of Rutishauser and the
-algorithm of Wynn, A technical report prepared under the sponsorship of the Deutsche Forschungsgemeinschaft, Project No. BA:106, Nov. 1957.
- [8] R. J. Schmidt, On the numerical solution of linear simultaneous equations by an iterative method, Philos. Mag. (7) 32 (1941), 369–383. MR 6231
- [9] E. Bodewig, A practical refutation of the iteration method for the algebraic eigenproblem, Math. Tables Aids Comput. 8 (1954), 237–240. MR 64479, https://doi.org/10.1090/S0025-5718-1954-0064479-X
- [10] J. Morris, An escalator process for the solution of linear simultaneous equations, Philos. Mag. (7) 37 (1946), 106–120. MR 18423
- [11] E. R. Love, The electrostatic field of two equal circular co-axial conducting disks, Quart. J. Mech. Appl. Math. 2 (1949), 428–451. MR 34700, https://doi.org/10.1093/qjmam/2.4.428
- [12] L. Fox and E. T. Goodwin, The numerical solution of non-singular linear integral equations, Philos. Trans. Roy. Soc. London Ser. A 245 (1953), 501–534. MR 54355, https://doi.org/10.1098/rsta.1953.0005
- [13] A. C. Aitken, ``On Bernoulli's numerical solution of algebraic equations,'' Proc. Roy. Soc. Edinburgh, v. 46, 1926, p. 287.
- [14] F. G. Friedlander, The reflexion of sound pulses by convex parabolic reflectors, Proc. Cambridge Philos. Soc. 37 (1941), 134–149. MR 3762
- [15] C. W. Clenshaw & F. W. J. Olver, ``Solution of differential equations by recurrence relations,'' MTAC, v. 5, 1951, p. 34.
- [16] L. Fox and E. T. Goodwin, Some new methods for the numerical integration of ordinary differential equations, Proc. Cambridge Philos. Soc. 45 (1949), 373–388. MR 30315, https://doi.org/10.1017/s0305004100025007
- [17] L. Fox & J. C. P. Miller, ``Table making for large arguments, the exponential integral,'' MTAC, v. 5, 1951, p. 163.
- [18] R. A. Buckingham, Numerical Methods, Pitman, London, 1957, p. 504-505.
- [19] D. R. Hartree, Numerical analysis, Oxford, at the Clarendon Press, 1952. MR 0052871
- [20] P. Wynn, Singular rules for certain non-linear algorithms, Nordisk Tidskr. Informationsbehandling (BIT) 3 (1963), 175–195. MR 166946, https://doi.org/10.1007/bf01939985
- [21] Robert Sauer, Einführung in die theoretische Gasdynamik, Springer-Verlag, Berlin, Göttingen, Heidelberg, 1951 (German). 2d ed. MR 0049017
- [22] C. Lanczos, Linear systems in self-adjoint form, Amer. Math. Monthly 65 (1958), 665–679. MR 103196, https://doi.org/10.2307/2308707
- [23] P. Wynn, Note on the solution of a certain boundary-value problem, Nordisk Tidskr. Informationsbehandling (BIT) 2 (1962), 61–64. MR 155445, https://doi.org/10.1007/bf02024783
Retrieve articles in Mathematics of Computation with MSC: 65.10
Retrieve articles in all journals with MSC: 65.10
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1962-0145647-X
Article copyright:
© Copyright 1962
American Mathematical Society


