A Method for Computing the Circular
Coverage Function

By A. R. DiDonato and M. P. Jarnagin

1. Introduction. In this paper an efficient method is described for the numerical
evaluation, with a high-speed digital computer, of a special case of the integral of
an uncorrelated bivariate Gaussian distribution centered at the origin over the
area of an arbitrarily placed circle in the plane. This function, popularly known
as the circular coverage function or as the non-central chi-square distribution for
two degrees of freedom*, can be written as

o e =g [feo{ () + () e

where S is the circle: (z — h)® 4+ (y — k)* = (oR)’, where o, = o, ="0, and ¢D
is the radial distance from the origin to the center (A, k) of the circle of integration,
S. Because of the equivalence mentioned above, a great deal of published literature
applies. The papers [13], [15], suggested by the referee, list a large number of such
references.

The average computing time for the calculation of the integral in equation (1)
to six decimal digits, by the method of this paper, is six milliseconds on the IBM
7090 and ten milliseconds on NORC. An extensive inverse table, which is described
in the last section of this paper and which is given in [4], has been computed with
R as a function of P and D. A condensed version, Table 1, is presented herein.

In the general case [3], [11] suppose the uncorrelated bivariate Gaussian dis-
tribution centered at the origin of an Oxy Cartesian coordinate system has standard
deviations o, , o, along the z and y axes respectively, and that the integral of this
function is to be evaluated over a circle of radius R with center at (4, k). Then
the probability, P, can be written in polar coordinates accordingly:

R R n k& 1 E (7
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wherez — h =rcos 0,y —k=rsing0=<r =< R 0=<60=<2r

If h=k=0,

(2)

I\

a special case identified as the V(K, ¢) or elliptical normal probability function
(sometimes known by other titles, for example, the generalized circular error
function) [4], [5], [6], [10], [14], [15], [16], [18] follows, i.e.,

D > K 2
(3) P(R; ,E ,0, O) = V(K,c) = %[o exp (-— gr2> I(,(é%) rdr,

Oz Oy

Received July 27, 1961.
* The equivalence between the function P(R, D) of equation (1) and the non-central chi-
square distribution is evident from equation (2) in [13].
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where

5 1= 14
1, K—R/O’z, A——, ———2—CT.

2¢?
Iy(z) is the modified Bessel function of the first kind of order zero, [8]. Equation
(3) is derived by setting h = k = 0 in equation (2), by using the trigonometric

2
identity 1(Z) cos 20 = 2 (cps o

0
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s1n20)’ and by introducing an integral expression for

Io(z) which is given by
(4) I(z) = -l-f exp (—z cos 9) db.
w™Jo

Equation (4) can be derived from Example 1 (ii), page 62, in [8].
If o = 0y = o,

in equation (2), the distribution is circular normal. In this case, in which A and
k are arbitrary, the center of the circle of integration can always be taken as offset
a distance of ¢D from the origin along the positive z axis by simply introducing a
rotation of axes through the angle arc tan (%) Moreover, by introducing the
integral expression for I,(z) as given by equation (4), the circular coverage func-
tion, P(R, D), [1], [4], [6], [7], [9], [12], [13], [14], [17], is obtained from equation
(2), ie.,

D D R

(5) P(E E R ,§> = P(R,D) = exp (—D/2) f exp (—1*/2)Io(rD)rdr,
Or O Oz Oz 0

where R = R/o, , D’ = (K + k%) /0.’

The function dP(R, D)/dR is required for computing the inverse function,
R(P, D), by the Newton-Raphson procedure (Appendix C, [4]) and is also of use
in computing P(R, D) itself (see equation (9)). This function is obtained straight-
forwardly from equation (5) as

P _ R’ + D2>
(6) 51—2 = Rexp (— 2 Io(RD).

It is apparent by comparing equations (6), (9) that dP/dR can be computed
simultaneously with P(R, D).

In a previous paper, [18], a very efficient computing method was described for
calculation of the V(K, ¢) function. The success of the method warranted con-
sideration of extending the technique to the P(R, D) function. This is not as
straightforward as for V(K, ¢); nevertheless, it is easily possible because of the
existence of a simple functional relationship, equation (9), between P(R, D) and
V(K,c).

2.  The Relationship between P(R, D) and V(K, c). The relationship between
P and V can be derived by utilizing two preliminary results which are given by
Fettis, in terms of ¢ = 1 — P, in equations (I-35) and (I-44) in [6]. They can be
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stated in terms of P as:

@) P(R,D)—P(D,R)=:}:V<|R—D|,I——Z—_T_%|> Efgggzg
(8) P(R,D) + P(D,R) = 1 — exp (-Rz ‘; D2> I,(RD).

Equation (8) is easily derived. The origin of equation (7) is not known to the
authors. The referee has pointed out that a geometrical proof was given by Dr.
David C. Kleinecke of the University of California in 1955. (See also paper I of
[15], page 613). Mr. Fettis has kindly placed at the disposal of the authors some
correspondence which indicates that the relationship was given in a Sandia Cor-
poration working paper in 1952, and that it was believed to have been originally
derived in a British publication by using power series.

It follows by adding the corresponding sides of equations (7) and (8) that*

P(R,D) = %[1 ~ exp (—R2 : Dz) I(RD) £V (' k- D, Ig_;g_'ﬂ
9) (+)ifR>D
(=)if R <D.

Thus, the P(R, D) function is computable at virtually the same speed as V(K, ¢),
since the second term in the brackets turns out to be a by-product of the recur-
rence relations which are used to compute V in the last term. Consequently, if
there exists a satisfactory computing program for the V function, a computing
program of equal merit can be realized for the P(R, D) function.

3. Recurrence Relations. The V function that appears as the last term of
equation (9) is identified with equation (3) by setting
K=|R—-Dj| c=|R—-D|/(R+ D).
It follows that

2RD _ R+ D

A~wm-pr B-@m-Dw

where it is assumed R # D. If R = D, then, from equation (7), V<| R —D]|,

Lg%g—') vanishes and P(R, D) is given by the first two terms of equation (9).

The two series representations for V<| R — D|, |E = D]

—R-l-—D> from which the

basic recurrence relations are derived are given by:

* Guenther recently (see equation (2) in [9]) derived an equation for P(R, D) in terms of
Iy(z) and the incomplete gamma function, which can be shown to be equivalent to equation
(9) of the present paper. However, he did not exploit his relationship from the point of view
of developing an efficient program for a high-speed digital computer.
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|[R—D|\_|R-D| (1Y
V('R DI’R+D RD Z nl

(10) RD/2 2
[ en(E ) B
_ |IR—D|\_, |R =D <[V
(11) V(IR PYEED ) ! 4RD~/™ r§2‘”(n')”

© (R—D)z ] 2n+1) _ N
f“Dexpl: w-w dw—].—’;)Msz.

The detailed derivations of equations (10), (11) are given in [4]. Briefly, to obtain
equation (10), introduce a variable of integration transformation

(12) w = Ar’/4

into the integral of equation (3), then replace Io(2w) by its Taylor series expan-
sion (see page 14, [8]),

(13) new =3 (1) (%)

which is convergent for all values of w, and subsequently reverse the order of in-
tegration and summation, which can be justified by application of the Weierstrass
“M” test. In order to derive equation (11) introduce a variable of integration
transformation

(14) w= Ar
into the integral of equation (3) and use the fact that

(15) %wf: exp< §A>I°( >dw—1

(See page 76, [8]). In the resulting integral expression, call it J, with upper and
lower limits of integration of infinity and AK? respectively, replace I o(g) by its

asymptotic expansion (see page 58, [8]), i.e.,

w exp (w/2) <~ [(2n) —n
(16) L < > V/2r(w/2) '§>24"(n')3 @u/2)™,

which is valid for sufficiently large w and finite N; subsequently interchange the
order of integration and summation. The interchange is justified for all values of
(2RD) for which equation (16) is valid because of the existence of the integral J
(see page 17, [2]).

The substitution of equations (13), (16) into equation (6) gives analogous
series representations for P/9R, i.e.,

oP &
(17) a—R'—RnZ‘:Oszny
oP 1 &
(18) S~ (p & %),
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where
2 2 2 2n
S IO
> 2 — D) ]1@2n) ) (=
(20) X2"+1 = _; exp [_(R P D) ][2(4,.’223)3 (2RD) ( 2 ) n = 07

following the notation of [4], in which there are slight distinctions between S;, ,

Xons1, Yeuor, and the corresponding unbarred variables used with V(K, ¢) and
aV/oK.

Thus two schemes are used to compute P. If
(21) 2RD = M (M is a positive constant),
then with reference to equations (10) and (17)

o — 1 2RD \*
T = ( o )(Rﬁ P5) T

(22)
|R* — D* 4in 5
_ R2+D2| Lt ) Sy 2L
2
(23) S = (g—f) Senz, n =1,

where the necessary initial terms are given by

2 _ D2 2 D2 2 _ D2 _
@4) To = @szl[‘ ~ exp (‘R+)] - R -8,
R2 +D2>
LD,

The following brief comments are made on the derivation of recurrence rela-
tions (22) and (23). Fuller details are given in [4]. From equations (13) and (19),
S:. is the general term in the series obtained by multiplying every term of the
Taylor series for I,(RD) by exp [— (R* 4+ D% /2], and equations (23) and (25)
are obtained immediately. If T, is regarded as defined by equation (10), two suc-
cessive integrations by parts give Ts. in terms of Ta—2, R, D, and n, after which
the term not containing T._» can be written more concisely in terms of S,. , and
equation (22) is the result.

These basic recurrence relations are cycled until

(25) So = exp (——

(26) To <€  Bom < (e >0).
Then P and dP/dR are given correctly to at least (| logi e | — 1) decimal digits by
1 Lo & (+)ifR>D
(27) P(R, D) ~§[1 —"Z:,’sz,,i; Tgn] (=) ifR < D,
oP s
(28) R~ R"ZE;) Sen.

If it is assumed that
(29) 2RD > M,
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then with reference to equations (11) and (18)

R —D| R —D)*(2n —1
(30) Moy = L4RT| Yona — ( iRD ) n2n )Mzn—l, n 1,
_ 1 on —
(31) Y2n—l = m( nzn 1) X2n—l’ n = 1,
(32) Xon = 2n — 1) YVou, n 21,

where the initial terms are given by

M1=;_(RLD> 2 fw ,exp (—y°) dy

) V2RD\ V2 //x
- s (e D)[ (52,
(34) X, = V/2RD 7—; exp [—(ﬁ%—D—)z] .

The following brief comments are made on the derivation of equations (30)
to (33). Fuller details are given in [4]. From equations (16) and (20), Xu41 is
the general term in the expansion obtained by multiplying every term of the
asymptotic expansion of Io(RD) by 4RD exp [— (R® + D?)/2]. Equations (31)
and (32), which together form a recurrence relation generating Xs,.1 , are obtained
immediately, the introduction of the variable ¥, leading to a computationally
efficient algorithm for the simultaneous evaluation of the last two terms in equation
(9). If My, is regarded as defined by equation (11), an integration by parts
gives Ms,, in terms of M, , R, D, and n, after which the term not containing
M,,_; can be written more concisely in terms of ¥,,_; , and recurrence relation (30)-
is the result. M, , originally obtained by putting » = 0 in the definition of Mz,
is expressed in equation (33) in terms of the error function (see [3], equations (6))
by a transformation in which y is ()| R — D |v/w/(RD).

These basic recurrence relations are cycled until

(35) Monia < ¢ Xonp < ¢, (e > 0).
Then P(R, D) and 3P/dR are given correctly to (] logw e | — 1) decimal digits by

~ L (+)if R > D
(36) P(R)D) N§[ 4_137) ZX2n+l =+ (1 - 2M2n+l>] (_) ifR < D,

n=0 n=0

(37) OF ~ |: Z X2n+1:|

R~ 4RD =0

The determination of the constant M is discussed in Appendix A of [4]. If the
constants M and e were chosen such that

(38) M =230, e=10"°

then sufficient tests were made on the results to assure seven-decimal digit ac-
curacy in the values of P and dP/dR for all values of R and D. The tests are de-
scribed in [4]. The maximum number of terms, N’, required for seven-decimal
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digit accuracy in either series that occurs in equation (27) was twenty for0 < B <
126,0 < D = 120.

4. Table Computation—Discussion of Results. The extensive inverse table,
mentioned in the introduction, has R tabulated as a function of P and D for the

TaBLE 1
Inverse P(R, D) Table, R = R(P, D)
\—IIZ——\ 0.1 0.5 1.0 | 15 2.0 3.0 4.0 5.0

.01 0.142132| 0.150917| 0.181965| 0.247976; 0.377894| 0.973968, 1.857355 2.807007
.05 0.321093| 0.340911| 0.410355] 0.552995| 0.803492! 1.589932 2.514287| 3.475659
.10 0.460192| 0.488541| 0.586808| 0.780875| 1.090931| 1.931431| 2.867729| 3.833372
.15 0.571548| 0.606683| 0.727145| 0.956651| 1.299471| 2.164629| 3.107065| 4.075094
.20 0.669719| 0.710800| 0.850071| 1.106744 1.470965| 2.351156, 3.297689| 4.267393
.25 0.760426| 0.806964| 0.962923| 1.241576| 1.621141| 2.511865 3.461479| 4.432486

.30 0.846714| 0.898407| 1.069594| 1.366651| 1.757905| 2.656649| 3.608743| 4.580828
.35 0.930528| 0.987190| 1.172547| 1.485396| 1.885955| 2.791156| 3.745340 4.718356
.40 1.013296| 1.074827| 1.273564| 1.600226| 2.008448| 2.919061 3.875068| 4.848912
.45 1.096204| 1.162568| 1.374100| 1.713036| 2.127745 3.043037| 4.000676| 4.975274
.50 1.180355| 1.251580] 1.475479; 1.825472| 2.245802| 3.165246| 4.124378 5.099676
.85 1.266891| 1.343064| 1.579042| 1.939121| 2.364426| 3.287634| 4.248157| 5.224119
.60 1.357113| 1.438388| 1.686286| 2.055680| 2.485472| 3.412162| 4.374006| 5.350606
.65 1.452637| 1.539246| 1.799042| 2.177146| 2.611062| 3.541034| 4.504154) 5.481380
.70 1.555634| 1.647914| 1.919739| 2.306101| 2.743883| 3.677012| 4.641388 5.619238
.75 1.669270| 1.767705| 2.051892| 2.446209| 2.887695| 3.823927| 4.789566| 5.768053
.80 1.798604| 1.903913| 2.201075| 2.603222| 3.048351| 3.987718| 4.954663| 5.933817
.85 1.952745| 2.066052| 2.377281| 2.787369| 3.236215 4.178871| 5.147218 6.127099
.90 2.151322| 2.274618| 2.601947| 3.020515| 3.473382| 4.419704| 5.389656) 6.370384

.95 2.453851| 2.591661] 2.939763| 3.368463| 3.826253| 4.777225| 5.749279| 6.731139
.97 2.654829| 2.801806| 3.161592| 3.595668| 4.056141| 5.009727| 5.982997| 6.965523
.99 3.042407| 3.205999| 3.584494/ 4.026818| 4.491533| 5.449368| 6.424667| 7.408327
.995 3.263342| 3.435790| 3.823110| 4.269216| 4.735933| 5.695826| 6.672133| 7.656366
.999 3.726147| 3.915765| 4.318250; 4.770776| 5.240984| 6.204548| 7.182694| 8.167991
.9999 4.302554| 4.511127| 4.927840| 5.386401| 5.860000| 6.827233| 7.807274| 8.793692
.99999 4.810368| 5.033640| 5.459903| 5.922582| 6.398559| 7.368429| 8.349868| 9.337129
.999999 5.269458| 5.504595| 5.937784; 6.403513 6.881283| 7.853179| 8.835714| 9.823646

AN ? N 6.0 8.0 10.0 20.0 30.0 50.0 80.0 120.0

.01 3.778556| 5.747335| 7.730490(17.70022 127.69100 (47.68389 |77.67999 (117.6779
.05 4.452164| 6.424982| 8.409712(|18.38123 |28.37229 [48.36531 |78.36146 |118.3593
.10 4.811875| 6.786445| 8.771899(18.74428 (28.73548 |48.72858 {78.72475 |118.7226
.15 5.054765| 7.030393| 9.016299(18.98923 28.98053 |48.97367 [78.96986 |118.9678
.20 5.247904| 7.224314] 9.210559(19.18391 [29.17528 |49.16846 |79.16466 |119.1626
.25 5.413665| 7.390705| 9.377228!19.35094 |29.34237 |49.33558 (79.33179 |119.3297
.30 5.562570| 7.540148| 9.52691219.50093 [29.49241 (49.48565 (79.48187 |119.4798
.35 5.700590| 7.678645| 9.665623119.63992 [29.63145 |49.62472 (79.62094 |119.6189
.40 5.831589| 7.810077| 9.797253|19.77181 29.76339 |49.75668 (79.75291 |119.7508
.45 5.958359| 7.937251! 9.924613(19.89941 |29.89104 (49.88435 |79.88069 (119.8785
.50 6.083144| 8.062420{10.04996 !20.02499 30.01667 |50.01000 [80.00625 {120.0042
.55 6.207953| 8.187598|10.17531 '20.15058 130.14229 |50.13565 180.13191 (120.1298
.60 6.334797| 8.314803(10.30269 120.27819 130.26994 |50.26332 (80.25959 |120.2575
.65 6.465923| 8.446290(10.43434 20.41008 {30.40188 (50.39528 |80.39156 |120.3895
.70 6.604135| 8.584868/10.57310 20.54907 |30.54092 150.53435 |80.53063 [120.5286
.75 6.753314| 8.734427|10.72284 120.69907 30.69097 |50.68442 (80.68071 |120.6786
.80 6.919464| 8.90098310.88959 E20.86610 30.85806 (50.85154 (80.84784 |120.8458
.85 7.113172| 9.095143(11.08398 21.06080 :31.05282 |51.04633 |81.04264 |121.0406
.90 7.356958| 9.339466|11.32857 21.30578 {31.29787 |51.29143 |81.28775 (121.2857
.95 7.718391| 9.701640|11.69111 {21.66887 '31.66108 |51.65469 (81.65104 |121.6490
.97 7.953181| 9.936878]11.92658 }21.90468 31.89696 |51.89061 (81.88697 |121.8849
.99 8.396685/10.38117 112.37128 |‘22.34999 32.34240 |52.33612 [82.33251 |122.3305
.995 8.645082/10.62997 |12.62029 22.59934 |32.59182 |52.58558 |82.58198 (122.5800
999 9.157380(11.14304 {13.13378 123.11348 33.10609 |53.09994 |83.09636 |123.0943
.9999 | 9.783802/11.77031 (13.76151 123.74194 33.73473 |53.72866 183.72513 1123.7231
99999  [10.32779 {12.31496 [14.30652 24.28755 :34.28047 154.27449 |84.27098 1124.2690
.999999  110.81475 12.80245 ;14.79431 124.77585 "34.76889 54.76298 184.75950 1124.7575
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following ranges:
P =0.01(.01)0.99,
D = 0(.1)5(.2)10(2)20(5) 120,
and
P = .99(.0005).9990(.0001).9999(.00001).99999(.000001) .999999,
D =0, .05, .10, .25, .75, 1, 1.5, 2, 3, 4, 5, 6, 8, 10, 20, 30, 50, 80, 120.

This table required the calculation of over 45,000 P(R, D) functions to an accuracy
of seven or more decimal digits. The tabulated values of R, determined by a Newton-
Raphson process, are correct to within one unit in the last digit position given.
The method by which this conclusion was verified is given in Appendix C of [4].
A condensed version of the complete table is given below. The complete table as
well as a similar one for K as a function of V and ¢ are available by direct request
to the authors.

It can be proved that R(P, D) as a function of P approximates a univariate
normal distribution to any desired accuracy for sufficiently large fixed values of
Dand |R — D|/(R 4 D) < 1. The relation between R and P in this case is given
by

1 R - ua):l 1 [ _ap
~ _ 1 —_— e

where pr = R(0.50, D) = D + 1/(2D). (A slightly different formulation of the
asymptotic behavior was given by Germond in [7]). This shows that the func-
tional relationship is symmetric with respect to the point B = uz, P = 0.50.
This is evident from a study of Table 1. Also, if 20 < D = 25, and if ur is computed
from the approximation D + 1/(2D) (which for these values of D is accurate to
107° or better), and if values of R as a function of P are then computed from equa-
tion (39) by inverse interpolation in an error function or univariate probability
integral table, the results are, in general, correct within 10~°, or one unit in the
fifth significant figure of R. Further, the accuracy improves rapidly as D increases.
This means that an efficient inverse table such as Table 1 need extend only from
P = 0to P = 0.50 if D is large. Each value of R for P > 0.50 is then found with
only one subtraction and one addition by using the symmetry property stated
above.

6. Acknowledgment. The authors wish to thank Mr. David Eliezer and Mr.
Robert Belsky, who programmed and coded the editing procedure for setting up
the complete tables, and Mr. Robert Gramp, who programmed and coded the
method of computing V(K, ¢) and P(R, D) for the IBM 7090. The authors are
indebted to the referee for suggestions which materially improved the introductory
portion of this paper, for correcting a false impression the authors had concerning
the origin of equation (9), and for calling the attention of the authors to the uni-
variate normal character of the circular coverage function for large D, as com-
mented on at the end of Section 4.
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