A note on finite difference methods for solving the eigenvalue problems of second-order differential equations
HTML articles powered by AMS MathViewer
- by M. R. Osborne PDF
- Math. Comp. 16 (1962), 338-346 Request permission
References
- J. W. Cooley, An improved eigenvalue corrector formula for solving the Schrödinger equation for central fields, Math. Comp. 15 (1961), 363–374. MR 129566, DOI 10.1090/S0025-5718-1961-0129566-X
- Alston S. Householder, Principles of numerical analysis, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953. MR 0059056 L. Fox, The Numerical Solution of Two-point Boundary Value Problems, Oxford, 1957.
- Leslie Fox, Some numerical experiments with eigenvalue problems in ordinary differential equations, Boundary problems in differential equations, Univ. Wisconsin Press, Madison, Wis., 1960, pp. 243–255. MR 0114302
- J. H. Wilkinson, The calculation of eigenvectors by the method of Lanczos, Comput. J. 1 (1958), 148–152. MR 102915, DOI 10.1093/comjnl/1.3.148
- Modern computing methods, National Physical Laboratory, Teddington, England; Her Majesty’s Stationery Office, London, 1957. Notes on applied science, no. 16. MR 0088783 M. R. Osborne, “The propagation of sound in a layered fluid medium,” Quart. J. Mech. Appl. Math., v. 13, n. 4, 1960, p. 472-86.
Additional Information
- © Copyright 1962 American Mathematical Society
- Journal: Math. Comp. 16 (1962), 338-346
- MSC: Primary 65.62
- DOI: https://doi.org/10.1090/S0025-5718-1962-0163434-3
- MathSciNet review: 0163434