An Approximation to the Fermi Integral $F_{1/2}(x)$

By H. Werner and G. Raymann

The Fermi Integral as defined, for instance, in the *Handbuch der Physik*, Bd. XX, S. 58 [1], is given by

$$F_p(x) = \int_0^\infty \frac{t^p}{e^{t-x} + 1} \, dt.$$

The function $F_{1/2}(x)$ has for negative values of x an expansion of the form

$$F_{1/2}(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \frac{e^{-x}}{x^n},$$

and for large positive x the asymptotic expansion

$$F_{1/2}(x) \sim x^{3/2} \left[\frac{2}{3} + \frac{\pi^2}{12 \cdot x^2} + \left(\frac{1}{3} \right) \frac{7}{60} \cdot \frac{\pi^4}{x^4} + \cdots \right]$$

$$+ \left(\frac{\pi}{2n - 1} \right) \frac{2^{2n-1} - 1}{n} \cdot \frac{\pi^{2n}}{x^{2n}} + \cdots,$$

compare [2], formulas (10) and (12);

B_{2n} are the Bernoulli numbers, given for example in [3], page 298. We obtained Chebyshev approximations to $F_{1/2}(x)$, based upon the table by McDougall and Stoner [4]. This table was subtabulated by interpolation with a fifth-degree polynomial. The approximations are

$$F_{1/2}^*(x) = e^x \sum_{r=0}^{5} a_r e^{rx} \quad \text{for} \quad -\infty < x \leq +1,$$

$$F_{1/2}^*(x) = x^{3/2} \left[\frac{2}{3} + \sum_{r=0}^{5} b_r x^{2r+2} \right] \quad \text{for} \quad +1 < x < +\infty.$$
the coefficients

\[
\begin{array}{ccc}
\nu & a_\nu & b_\nu \\
0 & +0.8860 & 7596 & +0.8435 & 00 \\
1 & -0.3087 & 1705 & +0.7108 & 09 \\
2 & +0.1463 & 8520 & -3.7124 & 56 \\
3 & -0.0584 & 3877 & +6.7056 & 28 \\
4 & +0.0143 & 1771 & -5.5948 & 77 \\
5 & -0.0015 & 0176 & +1.7777 & 87 \\
\end{array}
\]

With these approximations, the relative error \(|F_{1/2}(x) - F_{1/2}^*(x)|/F_{1/2}(x)| \) is less than \(2 \cdot 10^{-4}\) and \(5 \cdot 10^{-4}\), respectively.

Another intensive table of \(F_p(x)\) has been given by G. A. Chisnall [5] who also discusses in [6] a method for the interpolation of the existing tables of \(F_{1/2}(x)\). It is not difficult to obtain analogous Chebyshev approximations to \(F_p(x)\) for any fixed values of \(p\) to a prescribed degree of accuracy if one is able to generate the function with this (or slightly more) accuracy.

Institut für Angewandte Mathematik
der Universität Hamburg, Hamburg, and
Deutsches Rechenzentrum
Darmstadt, Germany

On the Congruences \((p - 1)! \equiv -1\) and \(2^{p-1} \equiv 1 \pmod{p^2}\)

By Erna H. Pearson

The results of computations to determine primes \(p\) such that one of the relations

\[(p - 1)! \equiv -1 \pmod{p^2},\]
\[2^{p-1} \equiv 1 \pmod{p^2}\]

holds have been published previously [1-5]. The known Wilson primes (those satisfying (1)) are 5, 13, and 563, the last having been determined by Goldberg [3] in testing \(p < 10^4\). Froberg [4] tested \(10^4 < p < 30,000\) without finding additional Wilson primes.

Froberg [4] determined \(p = 1093\) and \(p = 3511\) to be the only primes less than \(10^9\), but

Received April 6, 1962.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use