On the congruences $(p-1)!\equiv -1$ and $2^{p-1}\equiv 1 (\textrm {mod} p^{2})$
HTML articles powered by AMS MathViewer
- by Erna H. Pearson PDF
- Math. Comp. 17 (1963), 194-195 Request permission
References
-
N. G. W. H. Beeger, βOn the congruence $(p - 1)! \equiv - 1(\bmod {p^2})$,β Mess. of Math. v. 49, 1920, p. 177-178.
Emma Lehmer, βA note on Wilsonβs quotient,β Am. Math. Month., v. 44, 1937, p. 237 and 462.
- Karl Goldberg, A table of Wilson quotients and the third Wilson prime, J. London Math. Soc. 28 (1953), 252β256. MR 55358, DOI 10.1112/jlms/s1-28.2.252 C. E. Froberg, βSome computations of Wilson and Fermat remainders,β MTAC, v. 12, 1958, p. 281.
- Sidney Kravitz, The congruence $2^{p-1}\equiv 1(\textrm {mod}p^{2})$ for $p<100,000$, Math. Comp. 14 (1960), 378. MR 121334, DOI 10.1090/S0025-5718-1960-0121334-7
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford, at the Clarendon Press, 1954. 3rd ed. MR 0067125
Additional Information
- © Copyright 1963 American Mathematical Society
- Journal: Math. Comp. 17 (1963), 194-195
- MSC: Primary 10.06
- DOI: https://doi.org/10.1090/S0025-5718-1963-0159780-0
- MathSciNet review: 0159780