Tables for the evaluation of $\int _{0}^{\infty } x^{\beta }e^{-x}f(x)dx$ by Gauss-Laguerre quadrature

Authors:
P. Concus, D. Cassatt, G. Jaehnig and E. Melby

Journal:
Math. Comp. **17** (1963), 245-256

MSC:
Primary 65.55

DOI:
https://doi.org/10.1090/S0025-5718-1963-0158534-9

MathSciNet review:
0158534

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Tables of abscissae and weight coefficients to fifteen places are presented for the Gauss-Laguerre quadrature formula $\int _0^\infty {{x^\beta }{e^{ - x}}f(x)dx \sim \sum \limits _{k = 1}^n {{H_k}f({a_k})} }$ for $\beta = - \tfrac {1}{4}, - \tfrac {1}{2},{\text {and}} - \tfrac {3}{4}$ and *n* = 1(1)15.

- Zdeněk Kopal,
*Numerical analysis: With emphasis on the application of numerical techniques to problems of infinitesimal calculus in single variable*, 2nd ed., John Wiley & Sons Inc., New York, 1961. MR**0137277** - Herbert E. Salzer and Ruth Zucker,
*Table of the zeros and weight factors of the first fifteen Laguerre polynomials*, Bull. Amer. Math. Soc.**55**(1949), 1004–1012. MR**32191**, DOI https://doi.org/10.1090/S0002-9904-1949-09327-8
D. Burnett, “The numerical calculation of $\int _0^\infty {{x^m}} {e^{ - x}}f(x)dx$,” - Philip Rabinowitz and George Weiss,
*Tables of abcissas and weights for numerical evaluation of integrals of the form $\int _{0}^{\infty }\,e^{-x}x^{n}f(x)\,dx$*, Math. Tables Aids Comput.**13**(1959), 285–294. MR**107992**, DOI https://doi.org/10.1090/S0025-5718-1959-0107992-3 - Herbert E. Salzer, Ruth Zucker, and Ruth Capuano,
*Table of the zeros and weight factors of the first twenty Hermite polynomials*, J. Research Nat. Bur. Standards**48**(1952), 111–116. MR**0048901** - Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi,
*Higher transcendental functions. Vols. I, II*, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman. MR**0058756**
H. T. Davis,

*Proc. Cambridge Philos. Soc.*v. 33, 1937, p. 359-362.

*Tables of the Higher Mathematical Functions*v. 1, Principia Press, Bloomington, Ind., 1933, p. 366-367. V. S. Aizenshtat, V. I. Krylov, & A. S. Metleskii,

*Tables for Calculating Laplace Transforms and Integrals of the form*$\int _0^\infty {{x^8}} {e^{ - x}}f(x)dx$, Izdatel’ stov Akad. Nauk SSSR, Minsk, 1962 (Russian).

Retrieve articles in *Mathematics of Computation*
with MSC:
65.55

Retrieve articles in all journals with MSC: 65.55

Additional Information

Article copyright:
© Copyright 1963
American Mathematical Society