Fourth-order finite difference analogues of the Dirichlet problem for Poisson’s equation in three and four dimensions
Author:
James H. Bramble
Journal:
Math. Comp. 17 (1963), 217-222
MSC:
Primary 65.66
DOI:
https://doi.org/10.1090/S0025-5718-1963-0160338-8
Corrigendum:
Math. Comp. 17 (1963), 487-488.
MathSciNet review:
0160338
Full-text PDF Free Access
References | Similar Articles | Additional Information
- J. H. Bramble and B. E. Hubbard, On the formulation of finite difference analogues of the Dirichlet problem for Poisson’s equation, Numer. Math. 4 (1962), 313–327. MR 149672, DOI https://doi.org/10.1007/BF01386325
- J. H. Bramble and B. E. Hubbard, A theorem on error estimation for finite difference analogues of the Dirichlet problem for elliptic equations, Contributions to Differential Equations 2 (1963), 319–340. MR 152134
- George E. Forsythe and Wolfgang R. Wasow, Finite-difference methods for partial differential equations, Applied Mathematics Series, John Wiley & Sons, Inc., New York-London, 1960. MR 0130124 G. Shortley & R. Weller, “The numerical solution of Laplace’s equation,” J. Appl. Phys., v. 9, 1938, p. 334-348.
Retrieve articles in Mathematics of Computation with MSC: 65.66
Retrieve articles in all journals with MSC: 65.66
Additional Information
Article copyright:
© Copyright 1963
American Mathematical Society