The reduction of an arbitrary real square matrix to tridiagonal form using similarity transformations
HTML articles powered by AMS MathViewer
- by C. Donald LaBudde PDF
- Math. Comp. 17 (1963), 433-437 Request permission
Abstract:
In this paper a new algorithm for reducing an arbitrary real square matrix to tri-diagonal form using real similarity transformations is described. The method is essentially a generalization of a method due to A. S. Householder for accomplishing the same reduction in the case where the matrix is real and symmetric.References
- Wallace Givens, Numerical computation of the characteristic values of a real symmetric matrix, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1954. Rep. ORNL 1574. MR 0063771, DOI 10.2172/4412175
- Wallace Givens, Computation of plane unitary rotations transforming a general matrix to triangular form, J. Soc. Indust. Appl. Math. 6 (1958), 26–50. MR 92223, DOI 10.1137/0106004
- Alston S. Householder and Friedrich L. Bauer, On certain methods for expanding the characteristic polynomial, Numer. Math. 1 (1959), 29–37. MR 100962, DOI 10.1007/BF01386370
- Cornelius Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Research Nat. Bur. Standards 45 (1950), 255–282. MR 0042791, DOI 10.6028/jres.045.026
- Hans Rudolf Schwarz, Critère de stabilité pour des systèmes d’équations différentielles à coefficients constants complexes, C. R. Acad. Sci. Paris 242 (1956), 325–327 (French). MR 74609
- J. H. Wilkinson, Stability of the reduction of a matrix to almost triangular and triangular forms by elementary similarity transformations, J. Assoc. Comput. Mach. 6 (1959), 336–359. MR 106542, DOI 10.1145/320986.320988
- J. H. Wilkinson, Householder‘s method for the solution of the algebraic eigenproblem, Comput. J. 3 (1960/61), 23–27. MR 111131, DOI 10.1093/comjnl/3.1.23
Additional Information
- © Copyright 1963 American Mathematical Society
- Journal: Math. Comp. 17 (1963), 433-437
- MSC: Primary 65.35
- DOI: https://doi.org/10.1090/S0025-5718-1963-0156455-9
- MathSciNet review: 0156455