Optimal numerical integration on a sphere
HTML articles powered by AMS MathViewer
- by A. D. McLaren PDF
- Math. Comp. 17 (1963), 361-383 Request permission
References
-
B. A. Ditkin, “Some approximate formulae for evaluating triple integrals,” Dokl. Akad. Nauk SSSR, v. 62, 1948, p. 445-7.
C. Finden, Spherical integration, Dissertation submitted for the Diploma in Numerical Analysis and Automatic Computing, University of Cambridge, 1961.
- Preston C. Hammer and Arthur H. Stroud, Numerical evaluation of multiple integrals. II, Math. Tables Aids Comput. 12 (1958), 272–280. MR 102176, DOI 10.1090/S0025-5718-1958-0102176-6
- Volker Heine, Group theory in quantum mechanics, International Series in Natural Philosophy, Vol. 91, Pergamon Press, Oxford-New York-Toronto, Ont., 1977. An introduction to its present usage; Third revised reprinting. MR 0441103 D. G. Kendall, “Gaussian integration on the sphere,” Unpublished Report to the Atlas Computer Laboratory, 1962.
- Walter Ledermann, Introduction to the theory of finite groups, Oliver and Boyd, Edinburgh-London; Interscience Publishers, Inc., New York, 1953. 2d ed. MR 0054593 L. A. Lyusternik & B. A. Ditkin, “Construction of approximate formulae for evaluating multiple integrals,” Dokl. Akad. Nauk SSSR, v. 61, 1948, p. 441-4. L. A. Lyusternik, “Some cubature formulae for repeated integrals,” Dokl. Akad. Nauk SSSR, v. 62, 1948, p. 449-52.
- William H. Peirce, Numerical integration over the spherical shell, Math. Tables Aids Comput. 11 (1957), 244–249. MR 93910, DOI 10.1090/S0025-5718-1957-0093910-1
- S. L. Sobolev, Formulas for mechanical cubatures in $n$-dimensional space, Dokl. Akad. Nauk SSSR 137 (1961), 527–530 (Russian). MR 0129548
- S. L. Sobolev, Various types of convergence of cubature and quadrature formulas, Dokl. Akad. Nauk SSSR 146 (1962), 41–42 (Russian). MR 0140184
- S. L. Sobolev, Cubature formulas on the sphere which are invariant under transformations of finite rotation groups, Dokl. Akad. Nauk SSSR 146 (1962), 310–313 (Russian). MR 0141225
- S. L. Sobolev, On the number of nodes of cubature formulae on a sphere, Dokl. Akad. Nauk SSSR 146 (1962), 770–773 (Russian). MR 0141226 G. Szegö, Orthogonal Polynomials, Colloquium Publications, v. 23, American Mathematical Society, 1959.
- Hermann Weyl, Symmetry, Princeton University Press, Princeton, N. J., 1952. MR 0048449
Additional Information
- © Copyright 1963 American Mathematical Society
- Journal: Math. Comp. 17 (1963), 361-383
- MSC: Primary 65.55
- DOI: https://doi.org/10.1090/S0025-5718-1963-0159418-2
- MathSciNet review: 0159418