Optimal numerical integration on a sphere
HTML articles powered by AMS MathViewer
 by A. D. McLaren PDF
 Math. Comp. 17 (1963), 361383 Request permission
References

B. A. Ditkin, â€śSome approximate formulae for evaluating triple integrals,â€ť Dokl. Akad. Nauk SSSR, v. 62, 1948, p. 4457.
C. Finden, Spherical integration, Dissertation submitted for the Diploma in Numerical Analysis and Automatic Computing, University of Cambridge, 1961.
 Preston C. Hammer and Arthur H. Stroud, Numerical evaluation of multiple integrals. II, Math. Tables Aids Comput. 12 (1958), 272â€“280. MR 102176, DOI 10.1090/S00255718195801021766
 Volker Heine, Group theory in quantum mechanics, International Series in Natural Philosophy, Vol. 91, Pergamon Press, OxfordNew YorkToronto, Ont., 1977. An introduction to its present usage; Third revised reprinting. MR 0441103 D. G. Kendall, â€śGaussian integration on the sphere,â€ť Unpublished Report to the Atlas Computer Laboratory, 1962.
 Walter Ledermann, Introduction to the theory of finite groups, Oliver and Boyd, EdinburghLondon; Interscience Publishers, Inc., New York, 1953. 2d ed. MR 0054593 L. A. Lyusternik & B. A. Ditkin, â€śConstruction of approximate formulae for evaluating multiple integrals,â€ť Dokl. Akad. Nauk SSSR, v. 61, 1948, p. 4414. L. A. Lyusternik, â€śSome cubature formulae for repeated integrals,â€ť Dokl. Akad. Nauk SSSR, v. 62, 1948, p. 44952.
 William H. Peirce, Numerical integration over the spherical shell, Math. Tables Aids Comput. 11 (1957), 244â€“249. MR 93910, DOI 10.1090/S00255718195700939101
 S. L. Sobolev, Formulas for mechanical cubatures in $n$dimensional space, Dokl. Akad. Nauk SSSR 137 (1961), 527â€“530 (Russian). MR 0129548
 S. L. Sobolev, Various types of convergence of cubature and quadrature formulas, Dokl. Akad. Nauk SSSR 146 (1962), 41â€“42 (Russian). MR 0140184
 S. L. Sobolev, Cubature formulas on the sphere which are invariant under transformations of finite rotation groups, Dokl. Akad. Nauk SSSR 146 (1962), 310â€“313 (Russian). MR 0141225
 S. L. Sobolev, On the number of nodes of cubature formulae on a sphere, Dokl. Akad. Nauk SSSR 146 (1962), 770â€“773 (Russian). MR 0141226 G. SzegĂ¶, Orthogonal Polynomials, Colloquium Publications, v. 23, American Mathematical Society, 1959.
 Hermann Weyl, Symmetry, Princeton University Press, Princeton, N. J., 1952. MR 0048449
Additional Information
 © Copyright 1963 American Mathematical Society
 Journal: Math. Comp. 17 (1963), 361383
 MSC: Primary 65.55
 DOI: https://doi.org/10.1090/S00255718196301594182
 MathSciNet review: 0159418