Bounds on the truncation error by finite differences for the Goursat problem
HTML articles powered by AMS MathViewer
- by A. K. Aziz and B. E. Hubbard PDF
- Math. Comp. 18 (1964), 19-35 Request permission
References
-
A. K. Aziz & J. B. Diaz, “On linear hyperbolic equations with initial conditions on higher derivatives.” (To appear.)
R. Courant & D. Hilbert, Methods of Mathematical Physics, Vol. 2, Interscience, New York, 1962.
- R. Courant, K. Friedrichs, and H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann. 100 (1928), no. 1, 32–74 (German). MR 1512478, DOI 10.1007/BF01448839
- Richard Courant, Eugene Isaacson, and Mina Rees, On the solution of nonlinear hyperbolic differential equations by finite differences, Comm. Pure Appl. Math. 5 (1952), 243–255. MR 53336, DOI 10.1002/cpa.3160050303
- Ralph T. Dames, Stability and convergence for a numerical solution of the Goursat problem, J. Math. and Phys. 38 (1959/60), 42–67. MR 111152, DOI 10.1002/sapm195938142
- J. B. Diaz, On an analogue of the Euler-Cauchy polygon method for the numerical solution of $u_{xy}=f(x,y,u,u_{x},u_{y})$, Arch. Rational Mech. Anal. 1 (1958), 357–390. MR 104041, DOI 10.1007/BF00298015
- Kurt Friedrichs and Hans Lewy, Das Anfangswertproblem einer beliebigen nichtlinearen hyperbolischen Differentialgleichung beliebiger Ordnung in zwei Variablen. Existenz, Eindeutigkeit und Abhängigkeitsbereich der Lösung, Math. Ann. 99 (1928), no. 1, 200–221 (German). MR 1512448, DOI 10.1007/BF01459095
- George E. Forsythe and Wolfgang R. Wasow, Finite-difference methods for partial differential equations, Applied Mathematics Series, John Wiley & Sons, Inc., New York-London, 1960. MR 0130124
- Herbert B. Keller, On the solution of semi-linear hyperbolic systems by unconditionally stable difference methods, Comm. Pure Appl. Math. 14 (1961), 447–456. MR 145687, DOI 10.1002/cpa.3160140106
- Peter D. Lax, On the stability of difference approximations to solutions of hyperbolic equations with variable coefficients, Comm. Pure Appl. Math. 14 (1961), 497–520. MR 145686, DOI 10.1002/cpa.3160140324
- Milton Lees, Energy inequalities for the solution of differential equations, Trans. Amer. Math. Soc. 94 (1960), 58–73. MR 114045, DOI 10.1090/S0002-9947-1960-0114045-1
- Milton Lees, The solution of positive-symmetric hyperbolic systems by difference methods, Proc. Amer. Math. Soc. 12 (1961), 195–204. MR 129561, DOI 10.1090/S0002-9939-1961-0129561-2
- Robert H. Moore, A Runge-Kutta procedure for the Goursat Problem in hyperbolic partial differential equations, Arch. Rational Mech. Anal. 7 (1961), 37–63. MR 120772, DOI 10.1007/BF00250749
- Robert D. Richtmyer, Difference methods for initial-value problems, Interscience Tracts in Pure and Applied Mathematics, Tract 4, Interscience Publishers, Inc., New York, 1957. MR 0093918
- Hans J. Stetter, On the convergence of characteristic finite-difference methods of high accuracy for quasi-linear hyperbolic equations, Numer. Math. 3 (1961), 321–344. MR 138206, DOI 10.1007/BF01386033
- Vidar Thomée, Difference methods for two-dimensional mixed problems for hyperbolic first order systems, Arch. Rational Mech. Anal. 8 (1961), 68–88. MR 129555, DOI 10.1007/BF00277431
- Philipp Frank and Richard v. Mises, Die Differentialund Integralgleichungen der Mechanik und Physik, Mary S. Rosenberg, New York, 1943 (German). MR 0008415
- H. F. Weinberger, Exact bounds for solutions of hyperbolic equations by finite difference methods, Symposium on the numerical treatment of partial differential equations with real characteristics: Proceedings of the Rome Symposium (28-29-30 January 1959) organized by the Provisional International Computation Centre Libreria Eredi Virgilio Veschi, Rome, 1959, pp. 87–97. MR 0109440
- H. F. Weinberger, Error bounds in finite-difference approximation to solutions of symmetric hyperbolic systems, J. Soc. Indust. Appl. Math. 7 (1959), 49–75. MR 128084
- Burton Wendroff, On centered difference equations for hyperbolic systems, J. Soc. Indust. Appl. Math. 8 (1960), 549–555. MR 116472
Additional Information
- © Copyright 1964 American Mathematical Society
- Journal: Math. Comp. 18 (1964), 19-35
- MSC: Primary 65.66
- DOI: https://doi.org/10.1090/S0025-5718-1964-0160337-7
- MathSciNet review: 0160337