New monotone type approximations for elliptic problems
HTML articles powered by AMS MathViewer
- by James H. Bramble and Bert E. Hubbard PDF
- Math. Comp. 18 (1964), 349-367 Request permission
References
- A. K. Aziz and B. E. Hubbard, Bounds for the solution of the Sturm-Liouville problem with application to finite difference methods, J. Soc. Indust. Appl. Math. 12 (1964), 163–178. MR 165701
- James H. Bramble, Fourth-order finite difference analogues of the Dirichlet problem for Poisson’s equation in three and four dimensions, Math. Comp. 17 (1963), 217–222. MR 160338, DOI 10.1090/S0025-5718-1963-0160338-8
- J. H. Bramble and B. E. Hubbard, On the formulation of finite difference analogues of the Dirichlet problem for Poisson’s equation, Numer. Math. 4 (1962), 313–327. MR 149672, DOI 10.1007/BF01386325
- J. H. Bramble and B. E. Hubbard, A priori bounds on the discretization error in the numerical solution of the Dirichlet problem, Contributions to Differential Equations 2 (1963), 229–252. MR 149673
- J. H. Bramble and B. E. Hubbard, A theorem on error estimation for finite difference analogues of the Dirichlet problem for elliptic equations, Contributions to Differential Equations 2 (1963), 319–340. MR 152134
- J. H. Bramble and B. E. Hubbard, On a finite difference analogue of an elliptic boundary problem which is neither diagonally dominant nor of non-negative type, J. Math. and Phys. 43 (1964), 117–132. MR 162367 L. Collatz, “Bemerkungen zur Fehlerabschätzung für das Differenzenverfahren bei partiellen Differentialgleichungen,” Z. Angew. Math. Mech., v. 13, 1933, p. 56-57.
- Lothar Collatz, The numerical treatment of differential equations. 3d ed, Die Grundlehren der mathematischen Wissenschaften, Band 60, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. Translated from a supplemented version of the 2d German edition by P. G. Williams. MR 0109436
- J. B. Diaz and R. C. Roberts, On the numerical solution of the Dirichlet problem for Laplace’s difference equation, Quart. Appl. Math. 9 (1952), 355–360. MR 44225, DOI 10.1090/S0033-569X-1952-44225-4
- George E. Forsythe and Wolfgang R. Wasow, Finite-difference methods for partial differential equations, Applied Mathematics Series, John Wiley & Sons, Inc., New York-London, 1960. MR 0130124 S. Gerschgorin, “Fehlerabschätzung für das Differenzenverfahren zur Lösung partieller Differentialgleichungen,” Z. Angew. Math. Mech., v. 10, 1930, p. 373-382. E. Hopf, “Elementare Betrachtungen über die Losüngen partieller Differentialgleichungen Zweiter Ordnung vom Elliptischen Typus,” Sitz. Preuss. Akad. Wiss., v. 19, 1927, p. 147-152. L. Kantorovich & V. Kryloff, Approximate Methods of Higher Analysis, Noordhoff Ltd., Netherlands, 1958.
- T. S. Motzkin and W. Wasow, On the approximation of linear elliptic differential equations by difference equations with positive coefficients, J. Math. Physics 31 (1953), 253–259. MR 0052895
- Alexander Ostrowski, Über die determinanten mit überwiegender Hauptdiagonale, Comment. Math. Helv. 10 (1937), no. 1, 69–96 (German). MR 1509568, DOI 10.1007/BF01214284
- Alexander Ostrowski, Determinanten mit überwiegender Hauptdiagonale und die absolute Konvergenz von linearen Iterationsprozessen, Comment. Math. Helv. 30 (1956), 175–210 (German). MR 76433, DOI 10.1007/BF02564340
- A. M. Ostrowski, On some metrical properties of operator matrices and matrices partitioned into blocks, J. Math. Anal. Appl. 2 (1961), 161–209. MR 130561, DOI 10.1016/0022-247X(61)90030-0 H. B. Phillips & N. Wiener, “Nets and Dirichlet problem,” J. Math. Phys., v. 2, 1923, p. 105-124. C. Pucci, Some Topics in Parabolic and Elliptic Equations, Institute for Fluid Dynamics and Applied Mathematics, lecture series, 36, Feb.-May, 1958. M. Rockoff, “On the numerical solution of finite difference approximations which are not of positive type,” Notices Amer. Math. Soc., v. 10, 1963, p. 108.
- W. Uhlmann, Differenzenverfahren für die 1. Randwertaufgabe mit krummflächigen Rändern bei $\Delta u(x,y,z)=r(x,y,z,u)$, Z. Angew. Math. Mech. 38 (1958), 130–139 (German, with English, French and Russian summaries). MR 100363, DOI 10.1002/zamm.19580380308
- Richard S. Varga, Matrix iterative analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0158502
- E. A. Volkov, Solutions of boundary-value problems for the Poisson equation in a rectangle, Dokl. Akad. Nauk SSSR 147 (1962), 13–16 (Russian). MR 0144057
- Wolfgang Wasow, On the truncation error in the solution of Laplace’s equation by finite differences, J. Research Nat. Bur. Standards 48 (1952), 345–348. MR 0048923
Additional Information
- © Copyright 1964 American Mathematical Society
- Journal: Math. Comp. 18 (1964), 349-367
- MSC: Primary 65.65
- DOI: https://doi.org/10.1090/S0025-5718-1964-0165702-X
- MathSciNet review: 0165702