On maximal gaps between successive primes
Author:
Daniel Shanks
Journal:
Math. Comp. 18 (1964), 646651
MSC:
Primary 10.42
DOI:
https://doi.org/10.1090/S00255718196401674728
MathSciNet review:
0167472
Fulltext PDF Free Access
References  Similar Articles  Additional Information

E. Lucas, Théorie des Nombres, Vol. 1, GauthierVillars, Paris, 1891, p. 360.
 Daniel Shanks, Solved and unsolved problems in number theory. Vol. I, Spartan Books, Washington, D.C., 1962. MR 0160741
 J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 137689 Harald Cramér, “On the order of magnitude of the difference between consecutive prime numbers,” Acta Arith., v. 2, 1937, p. 2346. D. H. Lehmer, “Tables concerning the distribution of primes up to 37 millions,” 1957, copy deposited in the UMT File and reviewed in MTAC, v. 13, 1959, p. 5657. A. E. Western, “Note on the magnitude of the difference between successive primes,” J. London Math. Soc., v. 9, 1934, p. 276278. J. W. L. Glaisher, “On long successions of composite numbers,” Messenger of Mathematics, v. 7, 1877, p. 102, 171. Kenneth I. Appel & J. Barkley Rosser, Table for Estimating Functions of Primes, IDACRD Technical Report Number 4, 1961, p. 102. (Reviewed in RMT 55, Math. Comp., v. 16, 1962, p. 500501.)
 Donald B. Gillies, Three new Mersenne primes and a statistical theory, Math. Comp. 18 (1964), 93–97. MR 159774, DOI https://doi.org/10.1090/S00255718196401597746
 Karl Prachar, Primzahlverteilung, SpringerVerlag, BerlinGöttingenHeidelberg, 1957 (German). MR 0087685
Retrieve articles in Mathematics of Computation with MSC: 10.42
Retrieve articles in all journals with MSC: 10.42
Additional Information
Article copyright:
© Copyright 1964
American Mathematical Society