Equidistribution of Matrix-Power Residues Modulo One

By Joel N. Franklin

1. Introduction. In numerical analysis artificial random numbers are generated by recurrence formulas of the type

\(x_{n+1} = \lfloor Nx_n + \theta \rfloor \quad (n = 0, 1, 2, \cdots). \)

Here \(\{y\} = y - \lfloor y \rfloor = \text{the fractional part of } y \). The number \(N \) is an integer >1. The number \(x_0 \) is a given initial value such that \(0 \leq x_0 < 1 \). The number \(\theta \) is fixed. Some early references to numerical work with sequences of the type (1) are given by O. Taussky and J. Todd in [1]. Regarding the sequence \(x_n \) as a function of \(x_0 \), I proved in [2] that for almost all \(x_0 \) the sequence \(x_n \) is equidistributed modulo 1, i.e.,

\[
\lim_{k \to \infty} \frac{1}{k} \sum_{a \leq x_n < b, n=0, \ldots, k-1} 1 = b - a
\]

whenever \(0 \leq a < b \leq 1 \).

The purpose of this paper is to generalize the preceding result to vector-matrix recurrence formulas

\(x^{(n+1)} = \lfloor Ax^{(n)} + b \rfloor \quad (n = 0, 1, \cdots). \)

Here each \(x^{(n)} \) is a \(d \)-dimensional column vector, \(b \) is a \(d \)-dimensional column vector, and \(A \) is a \(d \times d \) matrix with integer components. In the preceding case (1), \(d = 1 \), \(A = N \), and \(b = 0 \). By \(\{y\} \) for a vector \(y \) with real components \(y_i \) is meant the vector with components \(\{y_i\} \). The vector \(x^0 \)—with parentheses removed around the superscript—is given in the unit cube \(C_d \) of \(d \) dimensions,

\[
C_d: 0 \leq x_i < 1 \quad (i = 1, \cdots, d).
\]

All the vectors \(x^n \) lie in \(C_d \). The main result of the paper is: A sufficient condition that \(x^n \) be equidistributed for almost all \(x^0 \) is that the matrix \(A \) be nonsingular and have no eigenvalue which is a root of unity; if \(b = 0 \), so that \(x^{n+1} = \lfloor Ax^n \rfloor \), the condition is necessary as well as sufficient.

This result has applications to numerical analysis and to the theory of numbers. In [3] the one-dimensional sequences (1) were analyzed at length. It was shown there that for \(d > 1 \) the successive \(d \)-tuples

\[
(x_0, \cdots, x_{d-1}), \quad (x_d, \cdots, x_{2d-1}), \quad (x_{2d}, \cdots, x_{3d-1}), \quad \cdots
\]

cannot be equidistributed in \(C_d \). In other words, the proportion of these vectors, taken sequentially, which lie in a subregion \(R \) of \(C_d \) cannot generally be expected to approach the ratio \(\text{(volume of } R)/\text{(volume of } C_d) = \text{volume of } R \). However, as the result stated in the last paragraph shows, if \(A = \text{diag}(N, N, \cdots, N) \), where \(N = \text{integer} >1 \), the vectors defined by (3) are equidistributed for almost all
choices of the d components of the initial vector x^0. For example, if $d = 3$ and $b = 0$, we find that the vectors $x^n = (u_n, v_n, w_n)$ ($n = 0, 1, \ldots$) defined by
\begin{equation}
 u_{n+1} = [Nu_n], \quad v_n = [Nv_{n+1}], \quad w_n = [Nw_{n+1}]
\end{equation}
are equidistributed in the unit cube C_3 for almost all initial values u_0, v_0, w_0.

In the theory of numbers we obtain the following sort of result: For almost all real initial values f_0, f_1, the Fibonacci sequence defined by
\begin{equation}
 f_{n+1} = f_n + f_{n-1} \quad (n = 1, 2, \ldots)
\end{equation}
is equidistributed by twos modulo one, i.e.,
\begin{equation}
 \lim_{k \to \infty} \frac{1}{k} \sum_{n=0}^{k-1} 1 = \frac{(b_1 - a_1)(b_2 - a_2)}{2}
\end{equation}
whenever $0 \leq a_1 < b_1 \leq 1$ and $0 \leq a_2 < b_2 \leq 1$. Setting $a_2 = 0, b_2 = 1$, we obtain the weaker result that almost all Fibonacci sequences are equidistributed modulo one.

2. The Theorems of Weyl and Riesz. A sequence of d-dimensional, real vectors
\begin{equation}
 x^{(n)} = (x_1^n, x_2^n, \ldots, x_d^n) \quad (n = 0, 1, \ldots)
\end{equation}
is said to be equidistributed modulo one if
\begin{equation}
 \lim_{k \to \infty} \frac{1}{k} \sum_{n=0}^{k-1} \sum_{a_i \leq x_i < b_i} \chi_{a_i < x_i < b_i} 1 = \prod_{i=1}^{d} (b_i - a_i)
\end{equation}
whenever $0 \leq a_i < b_i \leq 1$ ($i = 1, \ldots, d$). We shall use the following theorem of H. Weyl [4]:

Theorem. A sequence (1) of d-dimensional vectors $x^{(n)}$ is equidistributed modulo one if and only if
\begin{equation}
 \lim_{k \to \infty} \frac{1}{k} \sum_{n=0}^{k-1} \exp 2\pi i \left(j_1 x_{1,n} + j_2 x_{2,n} + \cdots + j_d x_{d,n} \right) = 0
\end{equation}
for all combinations of integers j_1, \ldots, j_d except $j_1 = \cdots = j_d = 0$.

We shall also need the ergodic theorem of F. Riesz; see [5] and [2]:

Theorem. Let a measurable set Ω be given, of finite or infinite measure, the corresponding measure and integral being defined according to Lebesgue, or more generally, by means of a distribution of positive masses. That being the case, let us designate by T a point-transformation which is single-valued (but not necessarily one-to-one) from Ω onto itself; and let us suppose that T conserves measure in the sense that, E being a measurable set, TE its transform, and E the set of points P whose images appear in TE, the sets E and TE have the same measure. Then, if $f_1(P)$ is an integrable function and $f_k(P) = f_1(T^{k-1}P)$, the arithmetic mean of the functions f_1, f_2, \ldots, f_n converges almost everywhere, as $n \to \infty$, to an integrable function $\phi(P)$ which is invariant (almost everywhere) under T. If Ω is of finite measure,
\begin{equation}
 \int_{\Omega} \phi(P) = \int_{\Omega} f_1(P).
\end{equation}
3. Measure-Preserving Congruences Modulo One. Let A be a $d \times d$ matrix with real components, and let b be a d-component column vector. We define a transformation $y = Tx$ of the d-dimensional unit cube C_d into itself by the congruence

$$y = Ax + b \pmod{1}$$

by which we mean $y = \{Ax + b\}$ or, equivalently,

$$y_i = \sum_{j=1}^{d} a_{ij} x_j + b_i \pmod{1} \quad (i = 1, \ldots, d).$$

We wish to determine when this transformation is measure-preserving.

First we remark that the congruence (1) is measure-preserving if and only if

$$w = Ax \pmod{1}$$

is measure-preserving. That is because the congruence (1) may be composed of two transformations, $w = \{Ax\}$ and $y = \{w + b\}$. Since the second transformation is one-to-one and measure-preserving, the composite transformation (1) is measure-preserving if and only if the first transformation (2) is measure-preserving.

Second, we remark that the transformation T is measure-preserving if and only if

$$\int_{C_d} f(P) = \int_{C_d} f(TP)$$

for all scalar functions f which are measurable in C_d. This elementary remark is justified by Riesz in [5].

Lemma. Let K be the set of nonzero d-dimensional column-vectors k with integer components. Let K_1 be the set of d-dimensional real column vectors with at least one component equal to a nonzero integer. Then the congruence $y = Ax + b \pmod{1}$ is measure-preserving in C_d if and only if the transpose matrix A^* maps K into K_1.

Proof. Let the measurable function $f(P) = f(x)$ have the Fourier series

$$f(x) \sim c(0) + \sum_{k \in K} c(k) \exp 2\pi ik^* x.$$

Since the Fourier series is multiply periodic, the congruence T is measure-preserving if and only if

$$c(0) = \int_{C_d} f(x) \, dx = \int_{C_d} f(Ax) \, dx$$

for all measurable f. But

$$\int_{C_d} f(Ax) \, dx = c(0) + \sum_{k \in K} c(k) \int_{C_d} \exp 2\pi ik^* Ax \, dx$$

$$= c(0) + \sum_{k \in K} c(k) \int_{C_d} \exp 2\pi i(A^* k)^* x \, dx.$$

Therefore, T is measure-preserving if and only if
\[
\int_{C_d} \exp 2\pi i (A^*_k)^* x \, dx = 0 \quad \text{for all } k \in K
\]

which is true if and only if \(A^*_k \in K_1 \) for all \(k \in K \).

The lemma shows that, if \(d = 1 \), the congruence \(y = Ax + b \) is measure-preserving if and only if \(A \) is a nonzero integer. However, if \(d > 1 \), the matrix \(A \) may have noninteger coefficients. For example, the congruence

\[
\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \equiv \begin{pmatrix} 0 & -6 \\ \frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \quad (\text{mod } 1)
\]

is measure-preserving. To see this, we observe that

\[
A^*_k = \begin{pmatrix} \frac{1}{2} k_1 \\ -6k_1 + k_2 \end{pmatrix}.
\]

If \(k \in K \), the first component \(\frac{k_1}{2} \) is a nonzero integer unless \(k_1 \) is zero or odd. If \(k_1 = 0 \), the second component \(= -6k_1 = \text{integer} \neq 0 \); if \(k_1 \) is odd, \(-6k_1 + k_2 = \text{even integer} + \text{odd integer} \neq 0 \). Therefore, \(A^*_k \) maps \(K \) into \(K_1 \).

In the rest of the paper we shall suppose that \(A \) has all components equal to integers.

Theorem. If all the components of \(A \) are integers, the congruence \(y = Ax + b \) (mod \(1 \)) is measure-preserving if and only if \(\det A \neq 0 \).

Proof. This result follows immediately from the lemma. Since \(A \) has integer components, if \(\det A = 0 \) there is a vector \(k \in K \) such that \(A^*_k = 0 \), which is not in \(K_1 \). If \(\det A \neq 0 \), all vectors \(A^*_k \) are nonzero vectors with integer components when \(k \in K \), so that \(A^*_k \in K \in K_1 \).

4. Ergodic Congruences Modulo One. We shall say that a measure-preserving transformation \(y = Tx \) from the \(d \)-dimensional unit cube into itself is **ergodic** if the only measurable functions \(\phi(x) \) for which

\[
\phi(x) = \phi(Tx) \quad \text{almost everywhere in } C_d
\]

are the functions \(\phi(x) = \text{constant} \ a.e. \ (\text{almost everywhere}) \).

Lemma. Let \(B \) be a \(d \times d \) matrix with integer components. Let \(K \) be the set of nonzero \(d \)-dimensional column-vectors with integer components. Then the sequence of vectors \(k, Bk, B^2k, \cdots \) is unbounded for every \(k \in K \) if and only if \(B \) has no eigenvalue which is zero or a root of unity.

Proof. Suppose that for some \(k \in K \) the sequence \(B^r k \) is bounded. Since \(B \) and \(k \) have integer components, each of the vectors \(B^r k \) must be one of the finite number of integer-component vectors which lie in some bounded subset of \(d \)-dimensional Euclidean space. Therefore, \(B^r k = B^s k \) for some \(r > s \). If \(B \) has no zero eigenvalue, \(B \) is nonsingular and \(B^q k = k \) for \(q = r - s \). But then

\[
0 = \det (B^s - I) = \prod_{j=q}^{q-1} \det (B - \omega^j I)
\]

where \(\omega = \exp (2\pi i / q) \). Then one of the roots of unity \(\omega^j \) is an eigenvalue of \(B \).

Conversely, if \(B \) has a zero eigenvalue, since \(B \) has integer components, there
is an eigenvector k in K such that $0 = Bk = B^2k = \cdots$, a bounded sequence. If B has an eigenvalue which is a qth root of unity, then B^q has 1 as an eigenvalue. Then there is an eigenvector k in K such that $B^qk = k$, and the sequence $B^j k$ is periodic, hence bounded.

Theorem. Let A be a nonsingular $d \times d$ matrix with integer components, and let b be a d-dimensional column-vector with real components. Then the measure-preserving congruence $y = Ax + b \pmod{1}$ is ergodic if A has no eigenvalue which is a root of unity. The congruence $y = Ax \pmod{1}$ is ergodic if and only if A has no eigenvalue which is a root of unity.

Proof. Let $Tx = Ax + b \pmod{1}$, where b is a vector with real components, and A is a nonsingular matrix with integer components and with no eigenvalue equal to a root of unity. Then $B = \text{transpose of } A = A^*$ has no eigenvalue which is zero or a root of unity. According to the lemma, $B^j k$ is unbounded as $j \to \infty$ for every k in K.

Let $\phi(x)$ be any measurable function satisfying (1). Since T is measure-preserving,

\begin{equation}
\phi(x) = \phi(T^jx) \text{ a.e. for all } j = 1, 2, \cdots.
\end{equation}

The measurable function $\phi(x)$ has a Fourier series

\begin{equation}
\phi(x) \sim a(0) + \sum_{k \in K} a(k) \exp 2\pi ik^*x.
\end{equation}

Furthermore,

\begin{equation}
T^j x = A^j x + b^{(j)} \pmod{1}
\end{equation}

where $b^{(j)} = b + Ab + \cdots + A^{j-1}b$. Therefore,

\begin{equation}
\phi(T^jx) \sim a(0) + \sum_{k \in K} a(k) \exp 2\pi ik^*(A^j x + b^{(j)})
\end{equation}

or, equivalently, with $B = A^*$,

\begin{equation}
\phi(T^jx) \sim a(0) + \sum_{k \in K} (a(k) \exp 2\pi ik^*b^{(j)}) \exp 2\pi i(B^j k)^*x.
\end{equation}

Therefore,

\begin{equation}
a(k) \exp 2\pi ik^*b^{(j)} = \int_{c_d} \phi(T^jx) \exp (-2\pi i(B^j k)^*x) \, dx
\end{equation}

\begin{equation}
= \int_{c_d} \phi(x) \exp (-2\pi i(B^j k)^*x) \, dx.
\end{equation}

Since $B^j k$ is unbounded for each k in K, the integrals (6) tend to zero for some subsequence of j tending to ∞. But the left-hand side of (6) has modulus $|a(k)|$ for all j. Therefore, $a(k) = 0$ for all $k \in K$. Then the Fourier series for $\phi(x)$ consists only of the constant term $a(0)$. Therefore, $\phi(x)$ equals this constant almost everywhere.

If $Tx = Ax \pmod{1}$, i.e., if $b = 0$, we can show that the transformation is ergodic only if A has no eigenvalue which is a root of unity. Suppose that A, and therefore B, have eigenvalues which are qth roots of unity. Then $B^q k = k$ for some
EQUIDISTRIBUTION OF MATRIX-POWER RESIDUES MODULO ONE

Let \(k \) be the smallest positive integer such that \(B^p k = k \). Since \(A \), and therefore \(B \), is nonsingular, no two of the vectors, \(k, Bk, \cdots, B^{p-1}k \) are equal. Therefore, the function

\[
\phi(x) = \sum_{j=0}^{p-1} \exp(2\pi ik^*A^jx)
\]

is nonconstant. But \(\phi(x) = \phi(Tx) \), since \(k^*A^p = (B^p k)^* = k^* \). Therefore, \(T \) is not ergodic. This completes the proof of the theorem.

If \(b \neq 0 \), the transformation \(Tx = Ax + b \) (mod 1) may be ergodic even if \(A \) has an eigenvalue which is a root of unity. For example, the transformation \(Tx = x + b \) is ergodic if and only if the components of \(b \) are rationally independent, i.e., if \(k^*b \neq \text{integer} \) for all \(k \) in \(K \). This result follows immediately from the uniqueness of the Fourier series of a measurable function \(\phi(x) \).

A more interesting question arises when \(A \neq I \). For example, consider the transformation

\[
T(x) = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \quad (\text{mod 1}).
\]

If \(\phi(x) \) has the Fourier series (3), then

\[
\phi(T^jx) \sim a(0) + \sum_{k \neq 0} a_j(k) \exp 2\pi i(2^j k_1 x_1 + k_2 x_2)
\]

where \(a_j(k) = a(k) \exp 2\pi ik_2 \sqrt{2} \). Then the invariance (1) implies

\[
a_j(k) = \int_0^1 \int_0^1 \phi(x) \exp -2\pi i(2^j k_1 x_1 + k_2 x_2) \, dx_1 \, dx_2.
\]

Letting \(j \to \infty \), we see that \(a(k) = 0 \) unless \(k_1 = 0 \). But then

\[
\phi(x_1, x_2) \sim \sum_{k_2 \neq 0} a(0, k_2) \exp 2\pi ik_3 x_2.
\]

Now the irrationality of \(\sqrt{2} \) implies that \(a(0, k_2) = 0 \) for all \(k_2 \neq 0 \). Therefore, the transformation (8) is ergodic.

Theorem. Let \(y_1 \equiv Nx_1 + b_1 \) (mod 1)

\[
y_s = x_s + b_s, \quad (s = 2, \cdots, d)
\]

where \(N \) is an integer with absolute value \(>1 \), and the \(b_s \) are real. This measure-preserving transformation is ergodic if and only if \(k_2 b_2 + \cdots + k_d b_d \neq \text{integer} \) for any integers \(k_2, \cdots, k_d \) which are not all zero.

Proof. This theorem is an immediate and obvious generalization of the preceding example.

5. Equidistribution of Matrix-Power Residues.

Theorem. Let \(A \) be a \(d \times d \) matrix with integer components. Let \(b \) be a \(d \)-dimensional column vector with real components. Given the vector \(x = x^{(0)} \), construct the sequence \(x^{(j)} \) by the recurrence formula
(1) \[x^{(j+1)} \equiv Ax^{(j)} + b \pmod{1} \]

for \(j = 0, 1, \cdots \). This sequence is equidistributed modulo one for almost all \(x \) if \(A \) has no eigenvalue equal to zero or a root of unity; if \(b = 0 \), the sequence is equidistributed for almost all \(x \) if and only if \(A \) has no eigenvalue equal to zero or a root of unity.

Proof. If \(A \) has no eigenvalue equal to zero, \(A \) is nonsingular; and, according to the theorem in Section 3, the transformation \(Tx = Ax + b \pmod{1} \) is measure-preserving. Therefore, by the Riesz ergodic theorem, for all measurable functions \(f \)

(2) \[\lim_{k \to \infty} \frac{1}{k} \sum_{j=0}^{k-1} f(x^{(j)}) \to \phi(x) \quad \text{as} \quad k \to \infty \]

for almost all \(x = x^{(0)} \), where \(\phi(x) = \phi(Tx) \) a.e. By the first theorem in Section 4, if \(A \) is nonsingular and has no eigenvalue which is a root of unity, \(\phi(x) = \text{constant} \) a.e. By the Riesz ergodic theorem, since the \(d \)-dimensional unit cube \(C_d \) has finite measure = 1, the constant \(\phi \) has the integral

(3) \[\int_{C_d} f(x) \, dx = \int_{C_d} \phi \, dx = \phi. \]

If \(0 \leq a_i < b_i \leq 1 \) (\(i = 1, \cdots, d \)) define

(4) \[f(x) = f(x_1, \cdots, x_d) = 1 \quad \text{for} \quad a_i \leq x_i < b_i \quad (i = 1, \cdots, d) \]

\[= 0 \quad \text{elsewhere in} \quad C_d. \]

From (2) and (3) we have the result, for almost all \(x \), that the sequence \(x^{(j)} \) is equidistributed in \(C_d \).

For \(b = 0 \) we must prove the “only if” part of the theorem. First suppose that \(A \) has an eigenvalue equal to zero. Then \(A^k = 0 \) for some \(k \) in \(K \). Let

(5) \[f(x) = \exp 2\pi ik^* x. \]

Since \(f(x) \) is Riemann-integrable, we must have

(6) \[\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} f(x^{(j)}) = \int_{C_d} f(x) \, dx \]

if \(x^{(j)} \) is equidistributed; for a proof of this result see Koksma [6]. From (5) we have

(7) \[f(x^{(j)}) = \exp 2\pi ik^* A^j x = 1 \quad (j \geq 1). \]

Therefore, the limit on the left-hand side of (6) equals one. Since the integral of \(f(x) \) equals zero, equation (6) is false; and the sequence \(x^{(j)} \) cannot be equidistributed.

Finally, for \(b = 0 \) suppose that \(A \) is nonsingular but that \(A \) has an eigenvalue which is a root of unity. Construct the nonconstant, Riemann-integrable function \(\phi(x) \) defined in formula (7) of Section 4. Since \(\phi(x) = \phi(Tx) \), we have

(8) \[\frac{1}{n} \sum_{j=0}^{n-1} \phi(x^{(j)}) = \phi(x^{(0)}) = \phi(x) \quad \text{for all} \quad n. \]

But

(9) \[\int_{C_d} \phi(x) \, dx = 0. \]
Therefore, the sequence \(x^{(f)} \) cannot be equidistributed. This completes the proof of the theorem.

6. Application to Numerical Analysis. In Monte Carlo calculations in \(d \) dimensions, the basic property required of pseudo-random vectors \(x^{(f)} \) is usually the property (6) of Section 5. This property is equivalent to the equidistribution of the \(x^{(f)} \). The reader is now referred back to the next to the last paragraph of Section 1.

7. Equidistribution of Fibonacci Sequences. We shall say that a sequence of real numbers \(x_n \) is equidistributed by \(d \)'s modulo one if the sequence of successive \(d \)-tuples

\[
 x^{(n)} = \begin{pmatrix} x_{n+1} \\ x_{n+2} \\ \vdots \\ x_{n+d} \end{pmatrix} \quad (n = 0, 1, \ldots)
\]

is equidistributed modulo one, as defined in Section 2. This concept was considered at length in [3]. For \(d = 1 \) we have the usual definition for the equidistribution of \(x_n \) modulo one. A sequence equidistributed by \(d \)'s for \(d > 1 \) is equidistributed by \(r \)'s for \(1 \leq r < d \), but the converse is false.

Theorem. Let a general Fibonacci sequence \(x_n \) be defined by

\[
x_n = a_1 x_{n-1} + a_2 x_{n-2} + \cdots + a_d x_{n-d} \quad (n > d)
\]

where \(a_1, a_2, \ldots, a_d \) are integers. Then for almost all real initial values \(x_1, \ldots, x_d \) the sequence \(x_n \) is equidistributed by \(d \)'s modulo one if and only if

\[
z^d \neq a_1 z^{d-1} + a_2 z^{d-2} + \cdots + a_d
\]

for \(z = 0 \) or for \(z = a \) root of unity.

Proof. Define the matrix

\[
 A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \cdot & \cdot & \cdot & \cdots & \cdot \\ 0 & 0 & 0 & \cdots & 1 \\ a_d & a_{d-1} & a_{d-2} & \cdots & a_1 \end{pmatrix}
\]

The relation (2) is equivalent to the vector-matrix relation

\[
 x^{(n+1)} = A x^{(n)} \quad (n = 0, 1, \cdots).
\]

The eigenvalues of \(A \) are the roots of the equation

\[
 0 = \det (zI - A) = z^d - a_1 z^{d-1} - \cdots - a_d.
\]

The theorem now follows directly from the result in Section 5.

California Institute of Technology
Pasadena, California

