A method for the computation of the error function of a complex variable

Author:
Otto Neall Strand

Journal:
Math. Comp. **19** (1965), 127-129

MSC:
Primary 65.25

DOI:
https://doi.org/10.1090/S0025-5718-1965-0170456-8

MathSciNet review:
0170456

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper presents a method of computing $z \equiv \left ( {2/\sqrt \pi } \right )\int _0^z {{e^{ - {u^2}}}du}$, where $z$ is complex. It is shown that $z \equiv 1 - {\text {erf }}z$ has no zeros in the right-hand half plane. An estimate of $|{\text {erfc }}z|$ is derived.

- J. Barkley Rosser,
*Theory and Application of $\int _{0^z}e^{-x^{2}}dx$ and $\int _{0^z}e^{-p^{2}y^{2}}dy\int ^y_0 e^{-x^{2}}dx$. Part I. Methods of Computation*, Mapleton House, Brooklyn, N. Y., 1948. MR**0027176** - H. E. Salzer,
*Formulas for calculating the error function of a complex variable*, Math. Tables Aids Comput.**5**(1951), 67–70. MR**48150**, DOI https://doi.org/10.1090/S0025-5718-1951-0048150-3 - Joseph Kestin and Leif N. Persen,
*On the error function of a complex argument*, Z. Angew. Math. Phys.**7**(1956), 33–40. MR**76941**, DOI https://doi.org/10.1007/BF01600725 - Burton D. Fried and Samuel D. Conte,
*The plasma dispersion function. The Hilbert transform of the Gaussian.*, Academic Press, New York-London, 1961. MR**0135916**
K. A. Karpov, - V. N. Faddeyeva and N. M. Terent′ev,
*Tables of values of the function $w(z)=e^{-z^{2}}(1+2i\pi ^{-1/2}\int _{0}^{z}e^{t^{2}}dt)$ for complex argument*, Pergamon Press, Oxford-London-New York-Paris, 1961. Edited by V. A. Fok; translated from the Russian by D. G. Fry. Mathematical Tables Series, Vol. 11. MR**0122013**
H. E. Salzer, op. cit., Formulas (6) and (7), p. 68.
- M. E. Munroe,
*Introduction to measure and integration*, Addison-Wesley Publishing Company, Inc., Cambridge, Mass., 1953. MR**0053186** - Theodor Laible,
*Höhenkarte des Fehler-integrals*, Z. Angew. Math. Phys.**2**(1951), 484–486 (German). MR**44894**, DOI https://doi.org/10.1007/bf02579766 - William Feller,
*An introduction to probability theory and its applications. Vol. I*, John Wiley and Sons, Inc., New York; Chapman and Hall, Ltd., London, 1957. 2nd ed. MR**0088081**

*Tables of the Function $w(z) = {e^{ - {z^2}}}\int _0^z {{e^{{x^2}}}dx}$ in a Complex Region*, Izdat. Akad. Nauk SSSR, Moscow, 1954. (Russian) MR

**16**, 749.

Retrieve articles in *Mathematics of Computation*
with MSC:
65.25

Retrieve articles in all journals with MSC: 65.25

Additional Information

Article copyright:
© Copyright 1965
American Mathematical Society