A New Integral Representation of the Bessel Coefficients

By P. Razelos

The modified Bessel coefficients I_n are defined by the series [1]

\[I_n(t) = \sum_{q=0}^{\infty} \frac{(t/2)^{2q+n}}{q!(q+n)!}, \]

with the integral representation [1]

\[I_n(t) = \frac{1}{\pi} \int_0^{\infty} e^{-tx} \cos nx \, dx. \]

An integral representation of the coefficients $I_n(t)$ is presented here where the path of integration is extended to infinity.

Theorem: The integral

\[A_n(t) = \frac{1}{\pi} \int_0^{\infty} e^{-t \cos x} \cos nx \, dx \]

is the modified coefficient $I_n(t)$ for any $0 < t < 1$. There are many ways by which the theorem can be proved, but we give here the following proof which consists of a straightforward evaluation of the integral A_n. The function $e^{-t \cos x}$ is expanded in a power series (which is absolutely convergent for all t) and we then integrate term by term.

\[e^{-t \cos x} = \sum_{r=0}^{\infty} \frac{(t \cos x)^r}{r!}. \]

Let us define

\[Q_n^r = \frac{2}{\pi} \int_0^{\infty} \cos^r x \cos nx \frac{\sin \varepsilon x}{x} \, dx. \]

Then

\[A_n(t) = \sum_{r=0}^{\infty} \frac{Q_n^r}{r!} t^r. \]

Introducing the expansion

\[\cos^r x = \frac{1}{2^{r-1}} \sum_{k=0}^{(r/2)-\delta} \binom{r}{k} \cos(r - 2k)x \]

(where $\delta = 1$ or $\frac{1}{2}$ for r even or odd, respectively) into (4), we obtain

\[Q_n^r = \frac{1}{2^r} \sum_{k=0}^{(r/2)-\delta} \binom{r}{k} \{g(r - 2k + n) + g(r - 2k - n)\}, \]

Received March 31, 1964. Revised July 6, 1964.
where

\[(8) \quad g(y) = \frac{2}{\pi} \int_0^\infty \cos yx \frac{\sin \varepsilon x}{x} dx = 0, 1, \frac{1}{2}\]

for \(|y/\varepsilon|\) greater than, less than, or equal to one, respectively [2]. Therefore, the only term which is nonzero in (7) is the term \(g(0)\), if it exists.

Then

\[(9) \quad Q_{n^r} = \frac{1}{2^r} \frac{r!}{\left(\frac{r-n}{2}\right)!\left(\frac{r+n}{2}\right)!}, \quad r \geq n \text{ and } r, n \text{ both even or odd},\]

\[(10) \quad Q_{n^r} = 0 \quad \text{for } r < n \quad \text{or} \quad r, n \text{ one even, one odd}.

We can now write

\[(11) \quad r - n = 2q, \quad r + n = 2(q + n).\]

Thus,

\[(12) \quad Q_{n^r} = \frac{r!}{2^r q! (q + n)!}.\]

Substituting (12) into (5), we obtain

\[(13) \quad A_n(t) = \sum_{q=0}^{\infty} \frac{\left(\frac{t}{2}\right)^{2q+n}}{q! (q + n)!} = I_n. \quad \text{Q.E.D.}\]

A similar expression can be readily obtained for the coefficients \(J_n(t)\). The value of \(\varepsilon = \frac{1}{2}\) gives the following interesting result. Let us define

\[(14) \quad B_n(t) = \frac{2}{\pi} \int_{n-\frac{1}{2}}^{n+\frac{1}{2}} \int_0^\infty e^{t \cos x} \cos \nu x \frac{\sin(x/2)}{x} dv dx.\]

It can be easily shown that \(B_n(t) = I_n(t)\). Consider now the integral

\[B(t) = \frac{2}{\pi} \int_{-\infty}^{\infty} I_* \left(\frac{1}{2}, t\right) dv\]

\[= \frac{2}{\pi} \int_0^\infty dv \int_0^\infty 2e^{t \cos x} \cos(\nu x) \sin(x/2) x dx\]

\[= \lim_{\nu \to 0} \frac{2}{\pi} \int_0^\infty dv \int_0^\infty 2e^{t \cos x} \cos(\nu x) \cos(\nu y) \sin(x/2) x dx\]

\[= 2e^{t \cos \frac{y}{2}} \bigg|_{y=0}^{y=\infty} = e^t\]

by Fourier's theorem. Clearly \(B(t) = \sum_{n=0}^{\infty} B_n(t)\).
Acknowledgment. The author wishes to thank Professor H. G. Elrod, Jr. for suggesting the problem.

Columbia University
New York, New York

Footnote to the Evaluation of Certain Complex Elliptic Integrals

By C. D. Sutherland

The formulas for evaluating the elliptic integral of the third kind with a complex parameter as given by Byrd and Friedman [1] have been corrected and simplified by Lang and Stevens [2]. There is, however, a further correction necessary in these latter results.

The integral to be evaluated is

$$ I = (a_1 + ib_1) \int_0^\phi \frac{d\theta}{(1 - \alpha^2 \sin^2 \theta)\Delta}, $$

where α^2 is complex and $\Delta = \sqrt{(1 - k^2 \sin^2 \theta)}$. In the formulas for evaluating I there appears the quantity

$$ \tau_2 = \int_0^{p_2} \frac{m_2 \, dx}{1 + h_2 \, x^2} = \frac{m_2}{\sqrt{h_2}} \tan^{-1}(p_2\sqrt{h_2}), $$

where

$$ p_2 = \frac{\sin \phi \cos \phi}{(1 + m_2 \sin^2 \phi)\Delta}. $$

We will consider the case where $m_2 \leq -1$. If this occurs we see that as ϕ goes to $\pi/2$, either $p_2 \to \infty$ ($m_2 = -1$) and $[\tan^{-1}(p_2\sqrt{h_2})] \to \pi/2$, or $p_2 \to 0$ through negative values ($m_2 < -1$) and $[\tan^{-1}(p_2\sqrt{h_2})] \to \pi$ (and not to zero). To avoid overlooking this possibility the proper representation for τ_2 is

$$ \tau_2 = \frac{-1}{\sqrt{h_2}} \cos^{-1} \left(\frac{\Delta \cos \phi}{\sqrt{(h_2 \sin^2 \phi + \Delta^2 \cos^2 \phi)}} \right) \quad \text{for} \quad m_2 = -1, $$

$$ \tau_2 = \frac{m_2}{\sqrt{h_2}} \cos^{-1} \left(\frac{\Delta(1 + m_2 \sin^2 \phi)}{\sqrt{(h_2 \sin^2 \phi \cos^2 \phi + \Delta^2(1 + m_2 \sin^2 \phi)^2)}} \right) \quad \text{for} \quad m_2 \neq -1. $$

It is to be noted, in particular, that the formulas for the real and imaginary parts of the complete integral should contain a term involving τ_2 whenever $m_2 \leq -1$.

Received March 16, 1964. Work performed under the auspices of the U. S. Atomic Energy Commission.