Mantissa Distributions

By Alan G. Konheim

Let b be an integer, at least 2, and write each positive real number in the form

$$(1) \quad x = mb^c,$$

where m (the mantissa) satisfies $1/b \leq m < 1$ and c (the characteristic) is an integer.

We define the product of mantissas* m_1 and m_2 by

$$(2) \quad m_1 \cdot m_2 = \begin{cases}
 m_1m_2 & \text{if } 1/b \leq m_1m_2 < 1, \\
 bm_1m_2 & \text{if } 1/b^2 \leq m_1m_2 < 1/b.
\end{cases}$$

Now suppose that M_1 and M_2 are independent, identically distributed random variables, each taking on values in the interval $[1/b, 1)$ such that

$$(3) \quad \Pr(M_1 \cdot M_2 \leq x) = \Pr(M \leq x).$$

What are all of the possible choices for the distribution function of M_1? The answer is provided by the following

Theorem. $\Pr(M_1 \leq x) = F_n(x)$ or $F_\infty(x)$ ($n = 1, 2, \ldots$), where

$$F_n(x) = \begin{cases}
 0 & \text{if } -\infty < x < b^{-1}, \\
 1/n & \text{if } b^{-1} \leq x < b^{-1+(1/n)}, \\
 2/n & \text{if } b^{-1+(1/n)} \leq x < b^{-1+(2/n)}, \\
 \vdots \\
 1 & \text{if } b^{-1} \leq x < \infty, \\
\end{cases}$$

and

$$F_\infty(x) = \begin{cases}
 0 & \text{if } -\infty < x < b^{-1}, \\
 1 + 1/n \left[\frac{\log x}{\log b} + 1 \right] & \text{if } b^{-1} \leq x < 1, \\
 1 & \text{if } 1 \leq x < \infty, \\
\end{cases}$$

Proof. We will write $M_i = b^{-\Theta_i}$ ($i = 1, 2$), where Θ_1 and Θ_2 are independent, identically distributed random variables, taking on values in $(0, 1]$. Note that

$$M_1 \cdot M_2 = b^{-(\Theta_1 + \Theta_2)}.$$

Received June 22, 1964.

* If m_i is the mantissa of x_i then $m_1 \cdot m_2$ is the mantissa of x_1x_2.

† [] denotes ‘the integer part of.’
where * denotes addition modulo one. Thus (3) is equivalent to requiring that \(\Theta_1 + \Theta_2 \) and \(\Theta_1 \) have the same distribution. If we set

\[
\phi(n) = E\{e^{2\pi i \Theta_1}\} = \int_0^1 e^{2\pi i \theta_1} \, dF_{\Theta_1}(\theta_1),
\]

then (3) and the independence of \(\Theta_1, \Theta_2 \) imply

\[
\phi(n) = E\{e^{2\pi i (\Theta_1 + \Theta_2)}\} = E\{e^{2\pi i (\Theta_1 + \Theta_2)}\} = \phi^2(n)
\]

so that \(\phi(n) = 0 \) or 1. Certainly \(\phi(0) = 1 \). There are two cases to be examined.

Case 1. \(\phi(n) = 0 \) for all \(n \neq 0 \).

It follows from the uniqueness theorem for Fourier-Stieltjes series that \(dF_{\Theta_1}(d\theta_1) = d\theta_1 \) and hence \(\Pr(M_1 \leq x) = F_\alpha(x) \).

Case 2. \(\phi(n) = 1 \) for some \(n \neq 0 \).

Let \(m \) be the smallest positive integer such that \(\phi(m) = 1 \). Then

\[
0 = \int_0^1 (1 - e^{2\pi i \theta_1}) \, dF_{\Theta_1}(\theta_1) = \int_0^1 (1 - \cos 2\pi m\theta_1) \, dF_{\Theta_1}(\theta_1).
\]

It follows that \(F_{\Theta_1} \) is a 'step function' with points of discontinuity at \(\theta_k = k/m \) \((k = 1, 2, \ldots, m) \) and, hence, \(\phi(n + m) = \phi(n) \) \((n = 0, \pm 1, \pm 2, \ldots) \). We assert that \(\phi(n) = 1 \) if and only if \(n = km \) for some integer \(k \); for if \(\phi(n) = 1 \) with \(km < n < (k + 1)m \) then \(\phi(n - km) = \phi(n) = 1 \) while \(0 < n - km < m \) contradicting the minimality of \(m \). The uniqueness theorem for Fourier-Stieltjes series now shows that \(\Pr(M_1 \leq x) = F_m(x) \).

I should like to acknowledge with thanks several suggestions made by Mr. Benjamin Weiss.

New Primes of the Form \(n^4 + 1 \)

By A. Gloden

This note presents some results of a continuation of the author's systematic factorization of integers of the form \(n^4 + 1 \) [1].

An electronic computer at l'Institut Blaise Pascal in Paris has been used to find solutions of the congruence \(x^4 + 1 \equiv 0 \pmod{p} \) for all primes of the form \(8k + 1 \) in the interval \(10^6 < p < 4 \cdot 10^6 \), thereby extending the previous range of such tables listed in [1].

With the aid of these tables, the complete factorization of \(n^4 + 1 \) has now been effected for all even values of \(n \) less than 2040 and for all odd values less than 2397.

Thus, the primality of \(\frac{1}{2}(n^4 + 1) \) has been established for the following 116 values of \(n \):
