Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society, the Mathematics of Computation (MCOM) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.98.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On general iterative methods for the solutions of a class of nonlinear operator equations
HTML articles powered by AMS MathViewer

by M. Z. Nashed PDF
Math. Comp. 19 (1965), 14-24 Request permission
References
  • M. Altman, A method of steepest ortho-descent, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9 (1961), 575–580. MR 137297
  • Noël Gastinel, Procédé itératif pour la résolution numérique d’un système d’équations linéaires, C. R. Acad. Sci. Paris 246 (1958), 2571–2574 (French). MR 94895
  • L. M. Graves, "Riemann integration and Taylor’s theorem in general analysis," Trans. Amer. Math. Soc., v. 29, 1927, p. 163–177.
  • R. M. Hayes, Iterative methods of solving linear problems on Hilbert space, Contributions to the solution of systems of linear equations and the determination of eigenvalues, National Bureau of Standards Applied Mathematics Series, No. 39, U.S. Government Printing Office, Washington, D.C., 1954, pp. 71–103. MR 0066563
  • M. R. Hestenes, "Hilbert space methods in variation theory and numerical analysis," Proc. Internat. Congress of Mathematicians, v. 3, 1954, p. 229–236.
  • A. S. Householder and F. L. Bauer, On certain iterative methods for solving linear systems, Numer. Math. 2 (1960), 55–59. MR 116464, DOI 10.1007/BF01386209
  • L. V. Kantorovič and G. P. Akilov, Funktsional′nyĭ analiz v normirovannykh prostranstvakh, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1959 (Russian). MR 0119071
  • M. A. Krasnosel′skiĭ and S. G. Kreĭn, An iteration process with minimal residuals, Mat. Sbornik N.S. 31(73) (1952), 315–334 (Russian). MR 0052885
  • M. Kerner, "Die Differentiale in der allgemeinen Analysis," Ann. of Math., v. 34, 1933, p. 546–572.
  • Cornelius Lanczos, Solution of systems of linear equations by minimized-iterations, J. Research Nat. Bur. Standards 49 (1952), 33–53. MR 0051583
  • Yu. Lumiste, The method of steepest descent for nonlinear equations, Tartu. Gos. Univ. Trudy Estest.-Mat. Fak. 37 (1955), 106–113 (Russian, with Estonian summary). MR 0076444
  • M. Z. Nashed, "Iterative methods for the solutions of nonlinear operator equations in Hilbert space," Ph. D. Dissertation, The University of Michigan, Ann Arbor, Mich., 1963.
  • M. Z. Nashed, The convergence of the method of steepest descents for nonlinear equations with variational or quasi-variational operators, J. Math. Mech. 13 (1964), 765–794. MR 0166638
  • W. V. Petryshyn, Direct and iterative methods for the solution of linear operator equations in Hilbert space, Trans. Amer. Math. Soc. 105 (1962), 136–175. MR 145651, DOI 10.1090/S0002-9947-1962-0145651-8
  • E. H. Rothe, Gradient mappings, Bull. Amer. Math. Soc. 59 (1953), 5–19. MR 52681, DOI 10.1090/S0002-9904-1953-09649-5
  • Survey of numerical analysis, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1962. MR 0135221
  • M. M. Vaĭnberg, Variational Methods for Investigation of Non-Linear Operators, GITTL, Moscow, 1956. (Russian) MR 19, 567. M. M. Vaĭnberg, "On the convergence of the method of steepest descents for nonlinear equations," Dokl. Akad. Nauk SSSR, v. 130, 1960, p. 9–12. Soviet Math Dokl., v. 1, 1960, p. 1–4. MR 25 #751.
  • M. M. Vaĭnberg, On the convergence of the process of steepest descent for nonlinear equations, Sibirsk. Mat. Ž. 2 (1961), 201–220 (Russian). MR 0126732
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC: 65.10
  • Retrieve articles in all journals with MSC: 65.10
Additional Information
  • © Copyright 1965 American Mathematical Society
  • Journal: Math. Comp. 19 (1965), 14-24
  • MSC: Primary 65.10
  • DOI: https://doi.org/10.1090/S0025-5718-1965-0179906-4
  • MathSciNet review: 0179906