Best approximate integration fuormulas and best error bounds
HTML articles powered by AMS MathViewer
- by Don Secrest PDF
- Math. Comp. 19 (1965), 79-83 Request permission
References
- Michael Golomb and Hans F. Weinberger, Optimal approximation and error bounds, On numerical approximation. Proceedings of a Symposium, Madison, April 21-23, 1958, Publication of the Mathematics Research Center, U.S. Army, the University of Wisconsin, no. 1, University of Wisconsin Press, Madison, Wis., 1959, pp. 117–190. Edited by R. E. Langer. MR 0121970
- J. L. Walsh, J. H. Ahlberg, and E. N. Nilson, Best approximation properties of the spline fit, J. Math. Mech. 11 (1962), 225–234. MR 0137283
- Carl de Boor, Best approximation properties of spline functions of odd degree, J. Math. Mech. 12 (1963), 747–749. MR 0154022
- I. J. Schoenberg, Spline interpolation and best quadrature formulae, Bull. Amer. Math. Soc. 70 (1964), 143–148. MR 157157, DOI 10.1090/S0002-9904-1964-11054-5
- Arthur Sard, Best approximate integration formulas; best approximation formulas, Amer. J. Math. 71 (1949), 80–91. MR 29283, DOI 10.2307/2372095
- Leroy F. Meyers and Arthur Sard, Best approximate integration formulas, J. Math. Physics 29 (1950), 118–123. MR 0036277, DOI 10.1002/sapm1950291118
- Arthur Sard, Linear approximation, American Mathematical Society, Providence, R.I., 1963. MR 0158203, DOI 10.1090/surv/009
- I. J. Schoenberg, Spline functions, convex curves and mechanical quadrature, Bull. Amer. Math. Soc. 64 (1958), 352–357. MR 100746, DOI 10.1090/S0002-9904-1958-10227-X
Additional Information
- © Copyright 1965 American Mathematical Society
- Journal: Math. Comp. 19 (1965), 79-83
- MSC: Primary 65.55
- DOI: https://doi.org/10.1090/S0025-5718-1965-0193752-7
- MathSciNet review: 0193752