
An Algorithm for the Machine Calculation of
Complex Fourier Series

By James W. Cooley and John W. Tukey

An efficient method for the calculation of the interactions of a 2m factorial ex-

periment was introduced by Yates and is widely known by his name. The generaliza-

tion to 3m was given by Box et al. [1]. Good [2] generalized these methods and gave

elegant algorithms for which one class of applications is the calculation of Fourier

series. In their full generality, Good's methods are applicable to certain problems in

which one must multiply an JV-vector by an JV X N matrix which can be factored

into m sparse matrices, where m is proportional to log JV. This results in a procedure

requiring a number of operations proportional to JV log JV rather than JV2. These

methods are applied here to the calculation of complex Fourier series. They are

useful in situations where the number of data points is, or can be chosen to be, a

highly composite number. The algorithm is here derived and presented in a rather

different form. Attention is given to the choice of JV. It is also shown how special

advantage can be obtained in the use of a binary computer with JV = 2m and how

the entire calculation can be performed within the array of JV data storage locations

used for the given Fourier coefficients.

Consider the problem of calculating the complex Fourier series

(1) XiJ)=ZAik)-Wjk, ¿«0,1, ...,iV-l,
*-0

where the given Fourier coefficients Aik) are complex and W is the principal

JVth root of unity,

(2) W = e2rilN.

A straightforward calculation using (1) would require JV2 operations where "opera-

tion" means, as it will throughout this note, a complex multiplication followed by a

complex addition.

The algorithm described here iterates on the array of given complex Fourier

amplitudes and yields the result in less than 2JV Iog2 JV operations without requiring

more data storage than is required for the given array A. To derive the algorithm,

suppose JV is a composite, i.e., JV = rvr2. Then let the indices in (1) be expressed

/ = ¿in + ¿o , ¿o - 0, 1, • • • , rx — 1, ¿i = 0, 1, • • • , r2 - 1,
(«* J

k = hr2 + fcc, h = 0, 1, • ■ - , r2 — 1, h = 0, 1, ■ ■ ■ , n — 1.

Then, one can write

(4) Xijijo) = £ £ Aih , ko)-W*">Wik\
*0 *1

Received August 17, 1964. Research in part at Princeton University under the sponsorship

of the Army Research Office (Durham). The authors wish to thank Richard Garwin for his

essential role in communication and encouragement. •

297

298 JAMES W. COOLEY AND JOHN W. TUKEY

Since

the inner sum, over fci, depends only on ¿0 and k0 and can be defined as a new array,

(6) Aiijo, h) = £ Aiki, ko)-Wlok¡r>.
ki

The result can then be written

(7) Xiji, jo) = £ Aiijo ,ko)- W(hri+Mk\

There are JV elements in the array Ai, each requiring rx operations, giving a total

of JVri operations to obtain Ai. Similarly, it takes Nr2 operations to calculate X

from Ai. Therefore, this two-step algorithm, given by (6) and (7), requires a total

of

(8) T = Nin + r2)

operations.

It is easy to see how successive applications of the above procedure, starting with

its application to (6), give an m-step algorithm requiring

(9) T = Niri + r2+ ■ ■ ■ + rm)

operations, where

(10) N = rvr2--- rm.

If r¡ = Sjtj with Sj ,tj > 1, then s, + t¡ < r3- unless «y = t¡ = 2, when s¡ + t,- = r¡.

In general, then, using as many factors as possible provides a minimum to (9), but

factors of 2 can be combined in pairs without loss. If we are able to choose JV to be

highly composite, we may make very real gains. If all r¡ are equal to r, then, from

(10) we have

(11) m = logrJV

and the total number of operations is

(12) Tir) = rJVlogrJV.

If JV = rmsnl" ■■■ , then we find that

T

(13)

so that

m-r + n-s + p-t + ••• ,

log2 JV = m-log2 r + n-log2 s + p-log21 +

N log2 JV

is a weighted mean of the quantities

r s t

log2 r ' log2 s ' log21 '

MACHINE CALCULATION OF COMPLEX FOURIER SERIES 299

whose values run as follows

r logü r

2 2.00
3 1.88
4 2.00
5 2.15
6 2.31
7 2.49
8 2.67
9 2.82

10 3.01.

The use of r¡ = 3 is formally most efficient, but the gain is only about 6% over

the use of 2 or 4, which have other advantages. If necessary, the use of r, up to 10

can increase the number of computations by no more than 50%. Accordingly, we

can find "highly composite" values of JV within a few percent of any given large

number.

Whenever possible, the use of JV = rm with r = 2 or 4 offers important advantages

for computers with binary arithmetic, both in addressing and in multiplication

economy.

The algorithm with r = 2 is derived by expressing the indices in the form

, N ¿-¿«-r2~* + ••• +¿i-2+¿o,
(14)

k = fcm_1-2m~1 + ••■ + fci-2 + fco,

where /„ and kv are equal to 0 or 1 and are the contents of the respective bit positions

in the binary representation of / and k. All arrays will now be written as functions

of the bits of their indices. With this convention (1) is written

(15) Xijm-i, •••,/„) - £ £ • • ■ £Aikm-i, ■■■, ko)-wik-1-2m'l+-+ik",
kQ kx km_\

where the sums are over kv = 0, 1. Since

(Iß) T^J*m-l-2m_1 _ Jp-J0*m-l-2m-1

the innermost sum of (15), over km^i, depends only on ¿0, fcm_2, • ■ • , k0 and can

be written

(17) Aiijo, km_2, ■■■, ko) = YiAikm-i, ■■■, ko)-Whkm-'-2m'\
*m-l

Proceeding to the next innermost sum, over fcm_2, and so on, and using

ng\ -pp'-*m-|-2'»-< _ ■p^OJ_i-2'-l+...+jo)*m-i-2'»-'

one obtains successive arrays,

Aiijo, ■ ■ ■ , jl-l , fcm-!-l , ■ ■ ■ , ko)

(19) = £¿«(¿0, *•• ,3,-*,h»-i, ...,ko)-wl»->-2'-1+-+M-k-'-2m-1
km-l

for I = 1, 2, • • • , m.

300 JAMES W. COOLEY AND JOHN W. TUKEY

Writing out the sum this appears as

■¿l(¿0 , • • ■ , ¿I-l , fcm-i-l , • ■ * , h)

= Ai-iijo , ■•• , ji-2, 0, ¿„-i-i, ■■■ ,ko)

+ (-l)i,-'i"-,4w(i,, • • • ,jt-t, 1, fcm_t_i, • • • , *o)

• Wrtt-.-»,-+»-+*>-«-,> jw . o, 1.

According to the indexing convention, this is stored in a location whose index is

(21) /0-2"-1 + ••• + j,-i-2m~l + km+i ■2m-'-1 + ••• + ko.

It can be seen in (20) that only the two storage locations with indices having 0 and

1 in the 2m~l bit position are involved in the computation. Parallel computation is

permitted since the operation described by (20) can be carried out with all values of

¿o, • • • , ji-2, and ko, • • • , fcm-j-i simultaneously. In some applications* it is con-

venient to use (20) to express A¡ in terms of A¡_2, giving what is equivalent to an

algorithm with r = 4.

The last array calculated gives the desired Fourier sums,

(22) -X"(¿m-i, • • • , ¿o) = Amijo, ■■■ , /m_i)

in such an order that the index of an X must have its binary bits put in reverse

order to yield its index in the array Am .

In some applications, where Fourier sums are to be evaluated twice, the above

procedure could be programmed so that no bit-inversion is necessary. For example,

consider the solution of the difference equation,

(23) aXiJ + 1) + bXiJ) + cXiJ - 1) = Fij).

The present method could be first applied to calculate the Fourier amplitudes of

F(j) from the formula

(24) Bik) = iCfÜNF"*.

The Fourier amplitudes of the solution are, then,

Bik)
(25) Aik) =

aWk + b + eW-k

The Bik) and Aik) arrays are in bit-inverted order, but with an obvious modifi-

cation of (20), Aik) can be used to yield the solution with correct indexing.

A computer program for the ibm 7094 has been written which calculates three-

dimensional Fourier sums by the above method. The computing time taken for com-

puting three-dimensional 2° X 2b X 2C arrays of data points was as follows:

* A multiple-processing circuit using this algorithm was designed by R. E. Miller and S.

Winograd of the IBM Watson Research Center. In this case r = 4 was found to be most practi-

cal.

MACHINE CALCULATION OF COMPLEX FOURIER SERIES 301

abc No. Pts. Time (minutes)

4 4 3 2U .02
11 0 0 211 .02
4 4 4 212 .04

12 0 0 212 .07
5 4 4 213 .10
5 5 3 213 .12

13 0 0 213 .13

IBM Watson Research Center

Yorktown Heights, New York

Bell Telephone Laboratories,

Murray Hill, New Jersey

Princeton University

Princeton, New Jersey

1. G. E. P. Box, L. R. Connor, W. R. Cousins, O. L. Davies (Ed.), F. R. Hirnsworth &
G. P. Silitto, The Design and Analysis of Industrial Experiments, Oliver & Boyd, Edinburgh,
1954.

2. I. J. Good, "The interaction algorithm and practical Fourier series," J. Roy. Statist.
Soc. Ser. B., v. 20, 1958, p. 361-372; Addendum, v. 22, 1960, p. 372-375. MR 21 #1674; MR 23
#A4231.

