On the numcerical solution of $y^{’} =f(x, y)$ by a class of formulae based on rational approximation
HTML articles powered by AMS MathViewer
- by John D. Lambert and Brian Shaw PDF
- Math. Comp. 19 (1965), 456-462 Request permission
References
- P. Brock and F. J. Murray, The use of exponential sums in step by step integration, Math. Tables Aids Comput. 6 (1952), 63–78. MR 47403, DOI 10.1090/S0025-5718-1952-0047403-3
- Walter Gautschi, Numerical integration of ordinary differential equations based on trigonometric polynomials, Numer. Math. 3 (1961), 381–397. MR 138200, DOI 10.1007/BF01386037 E. Remes, “Sur le calcul effectif des polynomes d’approximation de Tchebycheff,” C. R. Acad. Sci. Paris, v. 199, 1934, pp. 337–340.
- Hans J. Maehly, Methods for fitting rational approximations. II, III, J. Assoc. Comput. Mach. 10 (1963), 257–277. MR 157474, DOI 10.1145/321172.321173
- Josef Stoer, A direct method for Chebyshev approximation by rational functions, J. Assoc. Comput. Mach. 11 (1964), 59–69. MR 164180, DOI 10.1145/321203.321211
- Peter Wynn, Über einen Interpolations-Algorithmus und gewisse andere Formeln, die in der Theorie der Interpolation durch rationale Funktionen bestehen, Numer. Math. 2 (1960), 151–182 (German). MR 128597, DOI 10.1007/BF01386220
- Zdeněk Kopal, Operational methods in numerical analysis based on rational approximations, On numerical approximation. Proceedings of a Symposium, Madison, April 21-23, 1958, Publication of the Mathematics Research Center, U.S. Army, the University of Wisconsin, no. 1, University of Wisconsin Press, Madison, Wis., 1959, pp. 25–43. Edited by R. E. Langer. MR 0102165
- John D. Lambert and Andrew R. Mitchell, On the solution of $y^{\prime } =f(x,\,y)$ by a class of high accuracy difference formulae of low order, Z. Angew. Math. Phys. 13 (1962), 223–232 (English, with German summary). MR 140188, DOI 10.1007/BF01601084
Additional Information
- © Copyright 1965 American Mathematical Society
- Journal: Math. Comp. 19 (1965), 456-462
- MSC: Primary 65.61
- DOI: https://doi.org/10.1090/S0025-5718-1965-0179947-7
- MathSciNet review: 0179947