On the number of solutions of certain trinomial congruences
Authors:
Jacqueline Wells and Joseph Muskat
Journal:
Math. Comp. 19 (1965), 483-487
MSC:
Primary 10.06
DOI:
https://doi.org/10.1090/S0025-5718-1965-0180523-0
MathSciNet review:
0180523
Full-text PDF Free Access
References | Similar Articles | Additional Information
- Emma Lehmer and H. S. Vandiver, On the computation of the number of solutions of certain trinomial congruences, J. Assoc. Comput. Mach. 4 (1957), 505–510. MR 93908, DOI https://doi.org/10.1145/320893.320906
- Erna H. Pearson and H. S. Vandiver, On a new problem concerning trinomial congruences involving rational integers, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 1278–1285. MR 60528, DOI https://doi.org/10.1073/pnas.39.12.1278
- H. S. Vandiver, New types of trinomial congruence criteria applying to Fermat’s last theorem, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 248–252. MR 61129, DOI https://doi.org/10.1073/pnas.40.4.248 Jacqueline Wells, Studies on the Number of Solutions of a Trinomial Congruence, M. S. Thesis, University of Pittsburgh, Pittsburgh, Pa., 1964.
Retrieve articles in Mathematics of Computation with MSC: 10.06
Retrieve articles in all journals with MSC: 10.06
Additional Information
Article copyright:
© Copyright 1965
American Mathematical Society