On the number of solutions of certain trinomial congruences
HTML articles powered by AMS MathViewer
- by Jacqueline Wells and Joseph Muskat PDF
- Math. Comp. 19 (1965), 483-487 Request permission
References
- Emma Lehmer and H. S. Vandiver, On the computation of the number of solutions of certain trinomial congruences, J. Assoc. Comput. Mach. 4 (1957), 505–510. MR 93908, DOI 10.1145/320893.320906
- Erna H. Pearson and H. S. Vandiver, On a new problem concerning trinomial congruences involving rational integers, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 1278–1285. MR 60528, DOI 10.1073/pnas.39.12.1278
- H. S. Vandiver, New types of trinomial congruence criteria applying to Fermat’s last theorem, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 248–252. MR 61129, DOI 10.1073/pnas.40.4.248 Jacqueline Wells, Studies on the Number of Solutions of a Trinomial Congruence, M. S. Thesis, University of Pittsburgh, Pittsburgh, Pa., 1964.
Additional Information
- © Copyright 1965 American Mathematical Society
- Journal: Math. Comp. 19 (1965), 483-487
- MSC: Primary 10.06
- DOI: https://doi.org/10.1090/S0025-5718-1965-0180523-0
- MathSciNet review: 0180523