Symmetric integration rules for hypercubes. II. Rule projection and rule extension
Author:
J. N. Lyness
Journal:
Math. Comp. 19 (1965), 394-407
MSC:
Primary 65.55
DOI:
https://doi.org/10.1090/S0025-5718-1965-0201068-5
MathSciNet review:
0201068
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A theory is described which facilitates the construction of highdimensional integration rules. It is found that, for large , an
-dimensional integration rule of degree
man be constructed requiring a number of function evaluations of order
. In an example we construct a
-dimensional rule of degree 9 which requires 52,701 function evaluations. The corresponding number for the product Gaussian is
.
- [1] C. F. Gauss, ``Methodus nova integralium valores per approximationem inveniendi,'' Comm. Soc. Reg. Sci. Göltingen, 1816. ,
- [2] P. C. Hammer, O. J. Marlowe, and A. H. Stroud, Numerical integration over simplexes and cones, Math. Tables Aids Comput. 10 (1956), 130–137. MR 86389, https://doi.org/10.1090/S0025-5718-1956-0086389-6
- [3] Preston C. Hammer and Arthur H. Stroud, Numerical evaluation of multiple integrals. II, Math. Tables Aids Comput. 12 (1958), 272–280. MR 102176, https://doi.org/10.1090/S0025-5718-1958-0102176-6
- [4] Zdeněk Kopal, Numerical analysis. With emphasis on the application of numerical techniques to problems of infinitesimal calculus in single variable, John Wiley & Sons, Inc., New York, 1955. MR 0077213
- [5] J. N. Lyness, Symmetric integration rules for hypercubes. I. Error coefficients, Math. Comp. 19 (1965), 260–276. MR 201067, https://doi.org/10.1090/S0025-5718-1965-0201067-3
- [6] J. C. P. Miller, ``Numerical quadrature over a rectangular domain in two or more dimensions. Quadrature in several dimensions using special points,'' Math. Comp., v. 14, 1960, pp. 130-138. MR 22 #6075.
- [7] F. Stenger, ``Numerical Integration in n Dimensions,'' Thesis, University of Alberta, Canada, 1963.
- [8] A. H. Stroud, Numerical integration formulas of degree 3 for product regions and cones, Math. Comp. 15 (1961), 143–150. MR 121990, https://doi.org/10.1090/S0025-5718-1961-0121990-4
- [9]
H. C. Thacher, Jr., ``Optimum quadrature formulas in
dimensions,'' MTAC, v. 11, 1957, pp. 189-194.
Retrieve articles in Mathematics of Computation with MSC: 65.55
Retrieve articles in all journals with MSC: 65.55
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1965-0201068-5
Article copyright:
© Copyright 1965
American Mathematical Society