Reviews and Descriptions of Tables and Books

Journal:
Math. Comp. **19** (1965), 503-526

DOI:
https://doi.org/10.1090/S0025-5718-65-99244-6

Corrigendum:
Math. Comp. **20** (1966), 207.

Full-text PDF Free Access

References | Additional Information

- Ronald A. Fisher and Frank Yates,
*Statistical Tables for Biological, Agricultural and Medical Research*, Oliver and Boyd Ltd., London, 1943. 2nd ed. MR**0009818**
C. L. Baker & F. J. Gruenberger, - C. E. Shannon,
*A mathematical theory of communication*, Bell System Tech. J.**27**(1948), 379–423, 623–656. MR**26286**, DOI https://doi.org/10.1002/j.1538-7305.1948.tb01338.x - A. I. Khinchin,
*Mathematical foundations of information theory*, Dover Publications, Inc., New York, N. Y., 1957. Translated by R. A. Silverman and M. D. Friedman. MR**0092709** - Amiel Feinstein,
*Foundations of information theory*, McGraw-Hill Electrical and Electronic Engineering Series. McGraw-Hill Book Co., Inc., New York-Toronto-London, 1958. MR**0095087** - J. Wolfowitz,
*Coding theorems of information theory*, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 31, Springer-Verlag, Berlin-Göttingen-New York, 1964. MR**0176851** - John M. Wozencraft and Barney Reiffen,
*Sequential decoding*, Technology Press Research Monographs, The Technology Press of M.I.T., Cambridge, Mass.; John Wiley & Sons, Inc., New York-London, 1961. MR**0157803**
N. Wiener, - Norbert Wiener,
*Nonlinear problems in random theory*, Technology Press Research Monographs, The Technology Press of The Massachusetts Institute of Technology and John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR**0100912** - Y. W. Lee,
*Statistical theory of communication*, John Wiley & Sons, Inc., New York-London, 1960. MR**0134388** - D. H. Lehmer,
*Extended computation of the Riemann zeta-function*, Mathematika**3**(1956), 102–108. MR**86083**, DOI https://doi.org/10.1112/S0025579300001753 - C. B. Haselgrove and J. C. P. Miller,
*Tables of the Riemann zeta function*, Royal Society Mathematical Tables, Vol. 6, Cambridge University Press, New York, 1960. MR**0117905** - Henry E. Fettis,
*Calculation of elliptic integrals of the third kind by means of Gauss’ transformation*, Math. Comp.**19**(1965), 97–104. MR**175286**, DOI https://doi.org/10.1090/S0025-5718-1965-0175286-9
R. E. Selfridge & J. E. Maxfield, - V. M. Beljakov, R. I. Kravcova, and M. G. Rappoport,
*Tablitsy èllipticheskikh integralov. Tom I*, Izdat. Akad. Nauk SSSR, Moscow, 1962 (Russian). Mathematical tables of the Computing Center of the Academy of Sciences of the USSR. MR**0146411** - A. Van Wijngaarden and W. L. Scheen,
*Table of Fresnel integrals*, Verh. Nederl. Akad. Wetensch. Afd. Natuurk. Sect. 1**19**(1949), no. 4, 26. MR**35100** - Milton Abramowitz and Irene A. Stegun,
*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR**0167642**

*The First Six Million Prime Numbers*, The Rand Corporation, Santa Monica, published by The Microcard Foundation, Madison, Wisconsin, 1959. Reviewed in

*Math. Comp.*, v. 15, 1961, p. 82, RMT

**4**. D. H. Lehmer, “Tables concerning the distribution of primes up to 37 millions,” 1957, ms. deposited in the UMT file and reviewed in

*MTAC*, v. 13, 1959, p. 56–57, RMT

**3**.

*Extrapolation, Interpolation, and Smoothing of Stationary Time Series*, The M.I.T. Press and Wiley, New York, 1948.

*A Table of the Incomplete Elliptic Integral of the Third Kind*, Dover, New York, 1959. (See

*Math. Comp.*, v. 14, 1960, pp. 302–304, RMT

**65**.) F. A. Paxton & J. E. Rollin,

*Tables of the Incomplete Elliptic Integrals of the First and Third Kind*, Curtiss Wright Corporation, Research Division, Quehanna, Pennsylvania, 1959. (See

*Math. Comp.*, v. 14, 1960, pp. 209–210, RMT

**33**.)

Additional Information

Article copyright:
© Copyright 1965
American Mathematical Society