Tables of values of three infinite integrals

Authors:
Chih-Bing Ling and Hsien-Chueh Wu

Journal:
Math. Comp. **19** (1965), 487-494

DOI:
https://doi.org/10.1090/S0025-5718-65-99247-1

Full-text PDF Free Access

References | Additional Information

- Chih-Bing Ling,
*Tables of values of the integrals $\int ^\infty _0(x^m/{\rm sinh}^px)dx$ and $\int ^\infty _0(x^m/{\rm cosh}^px)dx$*, J. Math. Physics**31**(1952), 58–62. MR**0046126**
C.-B. Ling & C. W. Nelson, “On evaluation of Howland’s integrals,” - Carl W. Nelson,
*A Fourier integral solution for the plane-stress problem of a circular ring with concentrated radial loads*, J. Appl. Mech.**18**(1951), 173–182. MR**0041666** - C. W. Nelson,
*New tables of Howland’s and related integrals*, Math. Comp.**15**(1961), 12–18. MR**119442**, DOI https://doi.org/10.1090/S0025-5718-1961-0119442-0
J. W. L. Glaisher, “Numerical values of the series $1 - 1/{3^n} + 1/{5^n} - 1/{7^n} + 1/{9^n} - \cdot \cdot \cdot$ ,” - L. S. Goddard,
*The accumulation of chance effects and the Gaussian frequency distribution*, Philos. Mag. (7)**36**(1945), 428–433. MR**14620** - L. S. Goddard,
*The accumulation of chance effects and the Gaussian frequency distribution*, Philos. Mag. (7)**36**(1945), 428–433. MR**14620**
B. Butler, “On the evaluation of $\int _0^\infty {{{(\sin t/t)}^m}dt}$ by the trapezoidal rule,” - Kasaburô Harumi, Shigetoshi Katsura, and John W. Wrench Jr.,
*Values of $(2/\pi )\int _{0}^{\infty }({\rm sin}\,t/t)^{n}dt$*, Math. Comp.**14**(1960), 379. MR**122010**, DOI https://doi.org/10.1090/S0025-5718-1960-0122010-7 - R. G. Medhurst and J. H. Roberts,
*Evaluation of the integral $$I_{n}(b)=2\over𝜋∫^{∞}_{0}(sinx\over x)^{n} cos(bx)dx.$$*, Math. Comp.**19**(1965), 113–117. MR**172446**, DOI https://doi.org/10.1090/S0025-5718-1965-0172446-8

*Annals of Academia Sinica*, no. 2, part 2, 1955, pp. 45–50.

*Messenger of Math.*, v. 42, 1912, pp. 35–49. J. W. L. Glaisher, “Tables of $1 \pm {2^{ - n}} + {3^{ - n}} \pm {4^{ - n}} +$etc. and $1 + {3^{ - n}} + {5^{ - n}} + {7^{ - n}} +$ etc. to 32 places of decimals,”

*Quart. J. Pure and Appl. Math.*, v. 45, 1914, pp. 141–152. H. T. Davis,

*Tables of Higher Mathematical Functions*, Vol. 2, Principia Press, Bloomington, Indiana, 1955. J. Peters & J. Stein, “Mathematical tables,” Appendix of Peters’

*Ten-place Logarithmic Tables*, Vol. 1, Ungar, New York, 1957.

*Amer. Math. Monthly*, v. 67, 1960, pp. 566–569.

Additional Information

Article copyright:
© Copyright 1965
American Mathematical Society