of order m, depends only on λ and, by (4.6), its (α, β) element is a function of $\alpha - \beta$. If we define $N = (e_2, \cdots, e_m, 0)$, where $I = (e_1, \cdots, e_m)$, then

$$L^i = \sum_{i=0}^{m-1} \frac{p_i^{(s)}(\lambda)}{v} p_i(\lambda) N_i,$$

and is a polynomial in N_i. Since J_i is also a polynomial in N_i it must commute with L_i.

The above results were derived for $H \in UHM$. However, properties (ii) and (iii) generalize immediately to all Hessenberg matrices by the remarks at the beginning of Section 2.

University of California
Berkeley, California

2. V. N. Faddeeva, Computational Methods of Linear Algebra, Dover, New York, 1959, p. 20.

An Elimination Method for Computing the Generalized Inverse*

By Leopold B. Willner

0. Notations. We denote by

A an $m \times n$ complex matrix,

A^* the conjugate transpose of A,

A_{j}, $j = 1, \cdots, n$ the jth column of A,

A^+ the generalized inverse of A [7],

H the Hermite normal form of A, [6, pp. 34–36],

Q^{-1} the nonsingular matrix satisfying

$$H = Q^{-1}A,$$

e_i, $i = 1, \cdots, m$ the ith unit vector $e_i = (\delta_{ij})$,

r the rank of A ($= \text{rank } H$).

1. Method. The Hermite normal form of A is written as

$$H = \begin{bmatrix} B \\ 0 \end{bmatrix}$$

where B is $r \times n$.

Received July 13, 1966.

* Research supported by the National Science Foundation Grant GP-5230.
Combining (1) and (2) we have:

\[(3) \quad A = QH = [P, R] \begin{bmatrix} B \\ 0 \end{bmatrix} = PB,\]

where \([P, R]\) is the corresponding partition of \(Q\). Having displayed the \(m \times n\) matrix \(A\) of rank \(r\) as a product of the \(m \times r\) matrix \(P\) and the \(r \times n\) matrix \(B\), which are both of rank \(r\), we have as in [4]

\[(4) \quad A^+ = B^+P^+ = B^*(BB^*)^{-1}(P^*P)^{-1}P^*\]

therefore

\[(5) \quad A^+ = B^*(P^*PBB^*)^{-1}P^*\]
and by (3)

\[(6) \quad A^+ = B^*(P^*AB^*)^{-1}P^*.\]

The method can be summarized as follows:

Step 1. Given \(A\) obtain \(H\) by Gaussian elimination.

Step 2. From \(H\) determine \(P\) as follows:

The \(i\)th column of \(P\), \(P_i\), \(i = 1, \ldots, r\) is

\[(7) \quad P_i = A_j \quad \text{if} \quad H_j = e_i, \quad j = 1, \ldots, n.\]

Step 3. Calculate \(P^*AB^*\).

Step 4. Invert \(P^*AB^*\).

Step 5. Calculate \(A^+\) using (6).

2. **Remarks.**

(i) From (7) we conclude that in order to obtain \(P\) it is unnecessary

to keep track of the elementary operations involved in finding \(H\), e.g. [5].

(ii) Representation (4), as a computational method, was suggested by Gre-ville [4], Householder [5] and Frame [2]. The novelty of the present paper lies in

equation (6) and Step 2 above.

(iii) Like other elimination methods for computing \(A^+\), e.g. [1], the method

proposed here depends critically on the correct determination of rank \(A\), e.g. the

discussion in [3].

(iv) The advantage of method (6) over the elimination method of [1] is that

here the matrix \(A^*A\) (or \(AA^*\)) is not computed. However, other matrix multipli-
cations are involved in this method.

3. **Example.** For

\[A = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 1 & 1 \end{bmatrix}\]

we obtain by Gaussian elimination

\[
\begin{bmatrix} 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 1 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & -1 & -1 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = H
\]

since \(H_2 = e_1\) we have \(P_1 = A_2\), and since \(H_3 = e_2\) we have \(P_2 = A_3\). Hence for
A = PB we have
\[
\begin{bmatrix}
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 1
\end{bmatrix}
= \begin{bmatrix}
1 & 0 \\
1 & 1 \\
2 & 1
\end{bmatrix}
\begin{bmatrix}
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & -1 & -1
\end{bmatrix}
\]

and
\[
P^*AB^* = \begin{bmatrix}
12 & -3 \\
5 & 0
\end{bmatrix}
\]

from which
\[
(P^*AB^*)^{-1} = \frac{1}{15} \begin{bmatrix}
0 & 3 \\
-5 & 12
\end{bmatrix}
\]

hence
\[
A^+ = B^*(P^*AB^*)^{-1}P^* = \frac{1}{15} \begin{bmatrix}
0 & 0 & 0 \\
0 & 3 & 3 \\
-5 & 7 & 2 \\
5 & -4 & 1 \\
5 & -4 & 1
\end{bmatrix}
\]