Quasi-Newton methods and their application to function minimisation
HTML articles powered by AMS MathViewer
- by C. G. Broyden PDF
- Math. Comp. 21 (1967), 368-381 Request permission
References
- J. G. P. Barnes, An algorithm for solving non-linear equations based on the secant method, Comput. J. 8 (1965), 66–72. MR 181101, DOI 10.1093/comjnl/8.2.113
- C. G. Broyden, A class of methods for solving nonlinear simultaneous equations, Math. Comp. 19 (1965), 577–593. MR 198670, DOI 10.1090/S0025-5718-1965-0198670-6 W. C. Davidon, Variable Metric Methods for Minimization, A.E.C. Research and Development Report ANL-5990 (Rev. TID-4500, 14th ed.), 1959.
- R. Fletcher and M. J. D. Powell, A rapidly convergent descent method for minimization, Comput. J. 6 (1963/64), 163–168. MR 152116, DOI 10.1093/comjnl/6.2.163
- A. M. Ostrowski, Solution of equations and systems of equations, Pure and Applied Mathematics, Vol. IX, Academic Press, New York-London, 1960. MR 0127525
- Walter Rudin, Principles of mathematical analysis, 2nd ed., McGraw-Hill Book Co., New York, 1964. MR 0166310
- J. F. Traub, Iterative methods for the solution of equations, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0169356 Philip Wolfe, “The secant method for solving nonlinear equations,” Comm. Assoc. Comput. Mach., v. 2, 1959, pp. 12–13.
Additional Information
- © Copyright 1967 American Mathematical Society
- Journal: Math. Comp. 21 (1967), 368-381
- MSC: Primary 65.50
- DOI: https://doi.org/10.1090/S0025-5718-1967-0224273-2
- MathSciNet review: 0224273