On the calculation of the inverse of the error function
HTML articles powered by AMS MathViewer
 by Anthony Strecok PDF
 Math. Comp. 22 (1968), 144158 Request permission
Abstract:
Formulas are given for computing the inverse of the error function to at least 18 significant decimal digits for all possible arguments up to $1  {10^{  300}}$ in magnitude. A formula which yields $(x)$ to at least 22 decimal places for $x \leqq 5\pi /2$ is also developed.References

R. A. Fisher & E. A. Cornish, "The percentile points of distributions having known cumulants," Technometrics, v. 2, 1960, pp. 209β223.
 Henry Goldberg and Harriet Levine, Approximate formulas for the percentage points and normalization of $t$ and $\chi ^2$, Ann. Math. Statistics 17 (1946), 216β225. MR 16611, DOI 10.1214/aoms/1177730982
 John Wishart, $\chi ^2$ probabilities for large numbers of degrees of freedom, Biometrika 43 (1956), 92β95. MR 79385, DOI 10.2307/2333581
 Edward Paulson, An approximate normalization of the analysis of variance distribution, Ann. Math. Statistics 13 (1942), 233β235. MR 6668, DOI 10.1214/aoms/1177731608
 J. R. Philip, The function inverfc $\theta$, Austral. J. Phys. 13 (1960), 13β20. MR 118857, DOI 10.1071/PH600013
 L. Carlitz, The inverse of the error function, Pacific J. Math. 13 (1963), 459β470. MR 153878, DOI 10.2140/pjm.1963.13.459 H. Kuki, Mathematical Functions, a Description of the Centerβs 7094 FORTRAN II Mathematical Function Library, University of Chicago Computation Center, February 1966, pp. 205β214.
 J. Barkley Rosser, Theory and Application of $\int _{0^z}e^{x^{2}}dx$ and $\int _{0^z}e^{p^{2}y^{2}}dy\int ^y_0 e^{x^{2}}dx$. Part I. Methods of Computation, Mapleton House, Brooklyn, N.Y., 1948. MR 0027176
 H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Co., Inc., New York, N. Y., 1948. MR 0025596 H. C. Thacher, Jr., "Conversion of a power to a series of Chebyshev polynomials," Comm. ACM, v. 7, 1964, pp. 181, 182.
 Cecil Hastings Jr., Approximations for digital computers, Princeton University Press, Princeton, N. J., 1955. Assisted by Jeanne T. Hayward and James P. Wong, Jr. MR 0068915, DOI 10.1515/9781400875597
 F. B. Hildebrand, Introduction to numerical analysis, McGrawHill Book Co., Inc., New YorkTorontoLondon, 1956. MR 0075670
Additional Information
 © Copyright 1968 American Mathematical Society
 Journal: Math. Comp. 22 (1968), 144158
 MSC: Primary 65.25
 DOI: https://doi.org/10.1090/S00255718196802230702
 MathSciNet review: 0223070