Bivariate interpolation of potential functions
HTML articles powered by AMS MathViewer
- by F. D. Burgoyne PDF
- Math. Comp. 22 (1968), 589-594 Request permission
References
-
K. Pearson, Tracts for Computers. III: On the Construction of Tables and on Interpolation—part II: Bi-Variate Tables, London, 1920.
- Kuo-Chu Ho, Double interpolation formulae and partial derivatives in terms of finite differences, Math. Tables Aids Comput. 9 (1955), 52–62. MR 74110, DOI 10.1090/S0025-5718-1955-0074110-6 R. A. Buckingham, Numerical Methods, 2nd ed., London, 1962.
- Lothar Collatz, The numerical treatment of differential equations. 3d ed, Die Grundlehren der mathematischen Wissenschaften, Band 60, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. Translated from a supplemented version of the 2d German edition by P. G. Williams. MR 0109436
- E. J. Nyström, Zur numerischen Lösung von Randwertaufgaben bei gewöhnlichen Differentialgleichungen, Acta Math. 76 (1945), 157–184 (German). MR 13929, DOI 10.1007/BF02551575 G. Stracke, Bahnbestimmung der Planeten und Kometen, Berlin, 1929.
- L. V. Kantorovich and V. I. Krylov, Approximate methods of higher analysis, Interscience Publishers, Inc., New York; P. Noordhoff Ltd., Groningen 1958. Translated from the 3rd Russian edition by C. D. Benster. MR 0106537
- W. G. Bickley, Finite difference formulae for the square lattice, Quart. J. Mech. Appl. Math. 1 (1948), 35–42. MR 25282, DOI 10.1093/qjmam/1.1.35
- D. J. Panow, Formelsammlung zur numerischen Behandlung partieller Differentialgleichungen nach dem Differenzenverfahren, Akademie-Verlag, Berlin, 1955 (German). MR 0071873
Additional Information
- © Copyright 1968 American Mathematical Society
- Journal: Math. Comp. 22 (1968), 589-594
- MSC: Primary 65.20
- DOI: https://doi.org/10.1090/S0025-5718-1968-0226818-6
- MathSciNet review: 0226818