## A computer study of the orders of finite simple groups

HTML articles powered by AMS MathViewer

- by Edward L. Spitznagel and Stephen A. Szygenda PDF
- Math. Comp.
**22**(1968), 669-671 Request permission

## References

- Ja. G. Berkovič,
*Finite groups with dispersive second maximal subgroups*, Dokl. Akad. Nauk SSSR**158**(1964), 1007–1009 (Russian). MR**0180602** - Richard Brauer,
*On permutation groups of prime degree and related classes of groups*, Ann. of Math. (2)**44**(1943), 57–79. MR**8237**, DOI 10.2307/1969065 - Richard Brauer and Michio Suzuki,
*On finite groups of even order whose $2$-Sylow group is a quaternion group*, Proc. Nat. Acad. Sci. U.S.A.**45**(1959), 1757–1759. MR**109846**, DOI 10.1073/pnas.45.12.1757 - Larry Dornhoff,
*Simple groups are scarce*, Proc. Amer. Math. Soc.**19**(1968), 692–696. MR**233885**, DOI 10.1090/S0002-9939-1968-0233885-4 - Walter Feit and John G. Thompson,
*Solvability of groups of odd order*, Pacific J. Math.**13**(1963), 775–1029. MR**166261**
D. Gorenstein & J. H. Walter, “The characterization of finite groups with dihedral Sylow $2$-subgroups. I,” - Marshall Hall Jr.,
*The theory of groups*, The Macmillan Company, New York, N.Y., 1959. MR**0103215** - Zvonimir Janko and John G. Thompson,
*On a class of finite simple groups of Ree*, J. Algebra**4**(1966), 274–292. MR**201504**, DOI 10.1016/0021-8693(66)90041-X - John H. Walter,
*Finite groups with abelian Sylow $2$-subgroups of order $8$*, Invent. Math.**2**(1967), 332–376. MR**218445**, DOI 10.1007/BF01428899 - Harold N. Ward,
*On Ree’s series of simple groups*, Trans. Amer. Math. Soc.**121**(1966), 62–89. MR**197587**, DOI 10.1090/S0002-9947-1966-0197587-8

*J. Algebra*, v. 2, 1965, pp. 85–162. MR

**31**#1297a.

## Additional Information

- © Copyright 1968 American Mathematical Society
- Journal: Math. Comp.
**22**(1968), 669-671 - MSC: Primary 20.25
- DOI: https://doi.org/10.1090/S0025-5718-1968-0227266-5
- MathSciNet review: 0227266