Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Finite difference methods for the computation of the “Poisson kernel” of elliptic operators
HTML articles powered by AMS MathViewer

by Pierre Jamet PDF
Math. Comp. 22 (1968), 477-488 Request permission
  • J. H. Bramble and B. E. Hubbard, On the formulation of finite difference analogues of the Dirichlet problem for Poisson’s equation, Numer. Math. 4 (1962), 313–327. MR 149672, DOI 10.1007/BF01386325
  • R. Courant, K. O. Friedrichs & H. Lewy, “Über die partiellen Differenzengleichungen der mathematischen Physik,” Math. Ann., v. 100, 1928, pp. 32–74; English transl., New York University Courant Inst. Math. Sciences Research Dept., N. Y. 0.-7689.
  • George E. Forsythe and Wolfgang R. Wasow, Finite-difference methods for partial differential equations, Applied Mathematics Series, John Wiley & Sons, Inc., New York-London, 1960. MR 0130124
  • P. Jamet, Numerical Methods and Existence Theorems for Singular Linear Boundary-Value Problems, Thesis, University of Wisconsin, 1967. P. Jamet, Theorie des Barrières Discrètes et Applications à des Problèmes Linéaires Élliptiques du “Type de Dirichlet,” Rapport CEA - R 3214, Commissariat à l’Energie Atomique, Paris, 1967.
  • Pierre Jamet and Seymour V. Parter, Numerical methods for elliptic differential equations whose coefficients are singular on a portion of the boundary, SIAM J. Numer. Anal. 4 (1967), 131–146. MR 215543, DOI 10.1137/0704013
  • W. V. Koppenfels, Über die Existenz der Lösungen linearer partieller Differentialgleichungen vom elliptischen Typus, Dissertation, Göttingen, 1929. I. G. Petrovsky, “New proof of the existence of a solution of Dirichlet’s problem by the method of finite differences,” Uspehi Mat. Nauk, v. 8, 1941, pp. 161–170. (Russian) MR 3, 123.
  • Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210528
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC: 65.66
  • Retrieve articles in all journals with MSC: 65.66
Additional Information
  • © Copyright 1968 American Mathematical Society
  • Journal: Math. Comp. 22 (1968), 477-488
  • MSC: Primary 65.66
  • DOI:
  • MathSciNet review: 0250499