Extremal Properties of Balanced Tri-Diagonal Matrices

By Peter A. Businger

Abstract. If A is a square matrix with distinct eigenvalues and D a nonsingular matrix, then the angles between row- and column-eigenvectors of $D^{-1}AD$ differ from the corresponding quantities of A. Perturbation analysis of the eigenvalue problem motivates the minimization of functions of these angles over the set of diagonal similarity transforms; two such functions which are of particular interest are the spectral and the Euclidean condition numbers of the eigenvector matrix X of $D^{-1}AD$. It is shown that for a tri-diagonal real matrix A both these condition numbers are minimized when D is chosen such that the magnitudes of corresponding sub- and super-diagonal elements are equal.

If a tri-diagonal matrix A is such that corresponding sub- and super-diagonal elements have equal magnitude then A is said to be balanced or equilibrated. Wilkinson [5, p. 424] uses norms of balanced tri-diagonal matrices for error analysis of the eigenvalue problem. He observes that, given a tri-diagonal matrix $A = [a_{ij}]$ all of whose sub- and super-diagonal elements are nonzero, a diagonal matrix $D = \text{diag} (d_1, d_2, \ldots, d_n)$ can be found such that $D^{-1}AD$ is balanced. In fact, such a D is defined by

$$d_{i+1}/d_i = (|a_{i+1,i}|/|a_{i,i+1}|)^{1/2}, \quad i = 1, 2, \ldots, n - 1.$$

If some sub- or super-diagonal element of A is zero then finding its eigenvalues can be reduced to finding the eigenvalues of submatrices, each of which can be balanced separately.

It is an immediate consequence of Osborne’s Lemma 2 [3] that a balanced tri-diagonal matrix A has the extremal property

$$\|A\|_E = \inf_D \|D^{-1}AD\|_E,$$

where $\| \cdot \|_E$ denotes the Euclidean matrix norm (Schur norm, Frobenius norm). Our Theorem 1 states the analogous result for the spectral norm; Theorems 2 and 3 show that the eigenvalue problem of a balanced tri-diagonal matrix is optimally conditioned in the sense that no matrix of the form $D^{-1}AD$ has smaller angles between corresponding row- and column-eigenvectors.

We use $\| \cdot \|$ to denote the Euclidean vector norm, $\| \cdot \|_2$ for the subordinate matrix bound (the spectral matrix norm), $k_2(\cdot)$ for the spectral condition number of a nonsingular matrix, and $k_E(\cdot)$ for the Euclidean condition number (defined by $k_E(X) = \|X\|_E \|X^{-1}\|_E$). Absolute value signs applied to vectors are understood component-wise. D, D_1, and D_2 denote diagonal matrices with positive diagonal elements.

Theorem 1. If A is a balanced tri-diagonal real matrix then

$$\|A\|_2 = \inf_D \|D^{-1}AD\|_2.$$

Received May 9, 1968.
Proof. There exists a real diagonal matrix E with $|E| = I$ such that $B = EA$ is symmetric. Since, for all D, $\|D^{-1}AD\|_2 = \|ED^{-1}AD\|_2 = \|D^{-1}EAD\|_2 = \|D^{-1}BD\|_2$, the conclusion follows from the observation that for a symmetric matrix B, $\|B\|_2 \leq \|D^{-1}BD\|_2$ for all D.

The following theorem deals with the secants $\|y^H\| \|x\|/|y^Hx|$ of the angles between corresponding row- and column-eigenvectors of a matrix.

Theorem 2. If A is a balanced tri-diagonal real matrix with distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, corresponding column-eigenvectors x_1, x_2, \ldots, x_n, and corresponding row-eigenvectors $y_1^H, y_2^H, \ldots, y_n^H$ then

$$\frac{\|y_i^H\| \|x_i\|}{\|y_i^Hx_i\|} = \inf_D \frac{\|y_i^H D\| \|D^{-1}x_i\|}{\|y_i^Hx_i\|}$$

for $i = 1, 2, \ldots, n$.

Proof. Basing his argument on a theorem due to Stoer and Witzgall [4], Bauer [1] showed that for any vector pair y^H and x,

$$\min_D \frac{\|y^H D\| \|D^{-1}x\|}{\|y^Hx\|} = \frac{|y^Hx|}{y^Hx}.$$

Since $A = E^TAE$ for some real diagonal matrix E with $|E| = I$, $y_i = c_i E x_i$ for some scalars c_i. Hence

$$\frac{\|y_i^H\| \|x_i\|}{\|y_i^Hx_i\|} = \frac{|y_i^Hx_i|}{|y_i^Hx_i|}$$

for $i = 1, 2, \ldots, n$, which completes the proof.

Corollary. A has an eigenvector matrix $X = [x_1, x_2, \ldots, x_n]$ such that $k_2(X) = \inf_{D_1, D_2} k(E(D_1^{-1}XD_2))$.

Proof. By Theorem 2, each term in the sum on the right of the relationship

$$\inf_{D_1, D_2} k(E(D_1^{-1}XD_2)) = \inf_{D_1} \sum_{i=1}^n \frac{\|y_i^H D_i\| \|D_i^{-1}x_i\|}{\|y_i^Hx_i\|}$$

is minimized when $D_1 = I$. This implies the corollary.

Theorem 3. If A is a balanced tri-diagonal real matrix with distinct eigenvalues then A has an eigenvector matrix $X = [x_1, x_2, \ldots, x_n]$ such that $k_2(X) = \inf_{D_1, D_2} k(E(D_1^{-1}XD_2))$.

Proof. Bauer [2] showed that

$$\inf_{D_1, D_2} k(E(D_1^{-1}XD_2)) \geq \rho(E_1X^{-1}E_2X)$$

for all diagonal matrices E_1 and E_2 for which $|E_1| = |E_2| = I$ (ρ denotes the spectral radius). Hence it suffices for us to obtain equality for some eigenvector matrix X of A and for some such E_1 and E_2.

Let Q be a unitary matrix such that if $Z = XQ$ then $J = Z^{-1}AZ$ is the direct sum of 1 by 1 and 2 by 2 matrices. (The latter are of the form...
and correspond to conjugate complex pairs of eigenvalues $\lambda \pm i\mu$. If the permutation matrix P is chosen such that $X = XP$, invariance of k_2 implies that for all D_1 and D_2

$$k(D_1^{-1}XD_2) = k(D_1^{-1}XD_2) = k(D_1^{-1}XPD_2) = k(D_1^{-1}X(PD_2P^T)).$$

Hence no generality is lost if we assume that those pairs of diagonal elements of D_2 are equal which correspond to a complex conjugate pair of eigenvectors. Under this assumption

$$k(D_1^{-1}XD_2) = k(D_1^{-1}XD_2Q) = k(D_1^{-1}XQD_2),$$

which allows us to replace the problem of minimizing $k(D_1^{-1}XD_2)$ by that of finding $\inf_{D_1,D_2} k(D_1^{-1}ZD_2)$. Now $Z^{-1}AZ = J$ implies

$$Z^T A^T Z^{-T} = J^T = E_1 E_1$$

for some real diagonal matrix E_1 such that $|E_1| = I$. Hence, if $A^T = E_2 A E_2$, it follows that $E_2 Z^{-T} E_1 = ZD_2$ for some diagonal matrix D_2. Thus there exists a matrix Z_0 such that $Z_0^{-1}AZ_0 = J$ as well as $Z_0^{-1} = E_2 Z_0^{-T} E_2$. Hence

$$k(Z_0) = \|Z_0\|_2 \|E_1 Z_0^{-T}E_2\|_2 = \|Z_0\|_2^2 = \rho(Z_0^T Z_0) = \rho(E_1 Z_0^{-1} E_2 Z_0).$$

The result of Bauer stated at the beginning of this proof now establishes the theorem.

Bell Telephone Laboratories, Incorporated
Murray Hill, New Jersey 07974