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Abstract. If the solution of an integral equation can be expanded in the form of a Cheby-

shev series, the equation can be transformed into an infinite set of algebraic equations in

which the unknowns are the coefficients of the Chebyshev series. The algebraic equations

are solved by standard iterative procedures, in which it is not necessary to determine be-

forehand how many coefficients are significant. The method is applicable to equations of

either Fredholm or Volterra types.

Introduction. The solution of integral equations in Chebyshev series has been

the subject of two papers by Elliott [1], [2]. Elliott's method is essentially a colloca-

tion method, and it is necessary to decide in advance how many terms in the

Chebyshev series are likely to be significant. The method suggested here avoids this

difficulty; in many respects it is similar to the method for differential equations

given in an earlier paper by the present author [3].

Cons:der first the Fredholm equation

(1) y(x) = F(x) + xf   K(x,S)y(!;)dS.
J —i

It is assumed that the variables have been suitably transformed so as to reduce the

range of integration to (—1, 1).

Let

y(x) = ]£ aTTr(x)

and

Fix) = £' frTr(x) ,

where, in the usual way, VJ' denotes a sum whose first term is halved. If, then,

brs is defined by

f:'brsTr(x) = I   K(x,Ç)T,(Wï,
r=0 •'-1

it is easily seen that

00    ,

(2) ar — X 2 brsas = fr,       r = 0, 1, 2, • • • .
8=0

The solution of the integral equation may now be divided into two parts : first, the

evaluation of the coefficients brs; and, secondly, the solution of the algebraic

Eq. (2).
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Evaluation of the Coefficients brs. It will be assumed that the kernel K(x, £) can

be expanded in a double Chebyshev series

(3) *(*,*) = Ü £ kr.Tr(x)T.(t) .
T=0     «=0

This imphes that the kernel must be bounded throughout the region — 1 g x g 1,

-1 á { á 1. From the properties of Chebyshev polynomials, it can be seen that

brs  =  krs  — ——  (k,,s+2 + fcr,U-2l)   —  7TT  (fcr,S+4 4" fcr, U-4|)

(4)

— -TT,  (fcr,8+6 4" Ar. I«—6l)   • • •
5-7

so that bTS can be obtained immediately if the coefficients in the series (3) are known.

It may happen that the series (3) is already known, or can be obtained in terms of

other known series, and in such cases there is no further problem. In other cases,

the coefficients fcrs can be obtained by an obvious extension of the usual harmonic

analysis formulae; that is, if

(5) Su= Ê"k( cosacos ¿H
¡To      \      m'       n/

Slit
cos —

n

then

ri*
(6) i mnkrs = zZ   Su cos

t=o m

provided that m and n are sufficiently large for krs to be negligible if r ^ m or s 2ï n.

(As usual, X!" denotes a sum whose first and last terms are halved.)

It should be mentioned at this stage that if the kr, are evaluated by using Eqs.

(5) and (6), this evaluation accounts for a substantial part of the total computing

time. Moreover, the choice of suitable values for m and n introduces some of the

disadvantages of the collocation method. The greatest value of the present method

therefore fies in those problems where the series (3) can be found without resorting

to harmonic analysis; but even in other problems the method appears to compare

favourably with the collocation method.

Solution of the Algebraic Equations. When the brs have been obtained, the

problem reduces to the solution of the infinite set of Eqs. (2). An approximate

solution can always be obtained by solving the first N of these equations for the

first N unknowns; but the choice of a suitable value for N must necessarily be

somewhat arbitrary. Instead, the iterative procedures given below may be used;

these are similar to the procedures for differential equations given in the author's

earlier paper [3].

First consider the problem where F(x) is not identically zero and where X is

given. The set of Eqs. (2) is then an infinite set of linear simultaneous equations.

Now a study of Eq. (4) shows that the largest term on the right-hand side is likely

to be the one which includes fcro or fcri, and this term has a multiplier of order 1/s2.

Since fcro and fcri can be expected to decrease rapidly as r increases, it follows that
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brs is likely to be small unless r and s are both small. Provided that X is not too

large, therefore, the majority of the off-diagonal terms in (2) may be expected to be

small compared with the diagonal terms, and this suggests a Gauss-Seidel method

of solution. The precise conditions required for convergence will be discussed later.

The appropriate iterative formula is given by

(?) a™ = rAir \fr + x(£' b-a°(k) + £ ^.^Ol ,
1   —  A0rr L \s=0 s=r+l /J

where, in the case r = 0, the denominator 1 — XbTr must be replaced by 1 — jX60o.

The calculation proceeds in the obvious way, as many of the ar's as are significant

being retained at each stage of the iteration. The initial values ar(0) may be taken

as zero.

Secondly, consider the eigenvalue problem where F(x) vanishes identically and

X is unknown. The set of Eqs. (2) can then be written as

¿Z bTaas = Aar,
s=0

where A = 1/X is a latent root of the infinite matrix [br,]. The dominant value of A

(corresponding to the smallest eigenvalue X) can be found by iteration in the usual

way.

The usual practice would be to normalise the characteristic function so that the

largest of the coefficients aT is equal to unity. In many cases ao is the largest co-

efficient, or at least is of the same order of magnitude as the largest coefficient, and

it is convenient to normalise so that a0 = 1, giving the iterative formulae:

(8) Aw = \ boo + £ bo#.lh-l),
3-1

(9) a™ = ~ \i Ko + £ ft,*.*"" 1,       r fc 1.
A     L s=i J

If do = 0 (as, for example, if y is an odd function) or if a0 is small compared with

subsequent coefficients, some other appropriate coefficient must be taken equal to

unity, and Eqs. (8) and (9) are modified in an obvious way.

In order to find further eigenvalues of the integral equation, the dominant

latent root of [brt] must be removed in the usual manner, as described, for example,

in Modern Computing Methods [4, p. 26].

The methods described above for handling the algebraic equations are standard

and straightforward. More sophisticated methods, particularly methods for ac-

celerating the convergence of the iterative processes, may be more appropriate in

certain cases; a comprehensive account of the methods available is given by Wilkin-

son [5].

Example 1. Consider the equation

(10) y(x) = -cosh x + X       cosh (x + Ç)y(Ç)dÇ .

The solution can be shown to be
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y(x) =
cosh x

Suppose, for example, X

|X sinh 2 4- (X - 1) "

2. The solution then has the Chebyshev expansion

y(x) = | X 0.54727 4- 0.05868 Tt(x) + 0.00118 T4(a;)

4-0.00001 Tt(x) + • • • .

The coefficients i>rs for the kernel cosh (a; 4- £) are required only for even r and s,

and are shown in Table 1 ; the steps in the iterative process are shown in Table 2.

(A tick shows that the previous entry in a column is repeated.)

Table 1.

The Coefficients brs for the Kernel cosh (x + £).

0 6

0
2
4
6

5.95153
0.63812
0.01287
0.00011

-1.50063
-0.16090
-0.00324
-0.00003

-0.66264
-0.07105
-0.00143
-0.00001

-0.24458
-0.02622
-0.00053
-0.00000

Table 2.

Solution of Eq. (10) with X = 2. (Example 1)

Oo a i a i Of,

1
2
3
4
5
6
7
8
9

0.51
0.536
0.5438
0.54623
0.54697
0.54718
0.54724
0.54727

V

0.04
0.053
0.0570
0.05819
0.05853
0.05864
0.05867
0.05868

V

0.001
0.0011
0.00117
0.00118

V
V
V

0.00001
V
V
V
V

Table 3.

Solution of the Eigenvalue Problem (11). (Example 2)

a i a.i a a

1
2
3
4

2.976
2.813873
2.813431

V

0.107
0.107220

V

0.002
0.002162

V
0.000018

V

Example 2. Next consider the eigenvalue problem

(11) y(x) = XJ    cosh (x + ïp)y(Ç)dH
J -i
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The eigenvalue corresponding to an even characteristic function can be shown to be

1/(1 + 2 smn 2) = 0.355438, and the characteristic function is a multiple of

cosh x. The bTi are the same as those of Example 1, and the steps in the iteration

are set out in Table 3. The value obtained for X is 1/2.813431 = 0.355438, and

the characteristic function is y(x) = \ 4- 0.107220 T2(x) 4- 0.002162 T,(x) +

0.000018 T6(x) +  ■■■, which, it may be verified, is equal to 0.394924 cosh x.

Convergence. The process (7) does not converge for all X. It fails, obviously,

if X = 2/boo or if X = 1/brr for any r ^ 1 ; and if X is one of the eigenvalues of the

system no solution exists in general. If II and L are the matrices

"O &oi &02 bos •••"! [~è&oo 0 0 0

0 0 bn bn ■■■ h bio bn 0 0

0 0 0 623 •• ■ and      §620 621 622 0

0 0 0 0 ••• è 630 fest 032 033    •••

respectively, the process converges if and only if all values of p which satisfy

det (U 4- /xL - Ml) = 0 ,

where A = 1/X, are less than one in magnitude. The determinant is, of course,

infinite, but only as many rows and columns as are used in the iterative process

need be considered. Thus, when applied to Eq. (10), the process converges (at any

rate as far as the a6 term) if and only if all the roots of the equation

(2.97576 - A)p -1.50063 -0.66264 -0.24458

0.31906^ -(0.16090 4- A)p. -0.07105 -0.02622

0.00643m -0.00324m - (0.00143 4- A)m    -0.00053

0.00005m -0.00003m -0.00001m -Am

are less than one in magnitude. If A is large compared with, say, 0.006, the off-

diagonal terms in the third and fourth rows may be neglected, and the largest root

is then seen to be

_1.50 X 0.32M~ (2.98 - A) (0.16 4- A) '

It can therefore be deduced that the process converges if X lies within one of the

approximate ranges

-3.26 < X < 0.32

and

0.36 < X « 170 .

The restriction X « 170 follows from the assumption that A is large compared with

0.006; but further investigation using the third and fourth rows shows that this
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restriction can be dropped. Thus, in the case of Eq. (10), the process converges for

all positive X except for a small region near the eigenvalue 0.355438.

When X does not he within the region of convergence, or when the convergence

is unreasonably slow, a slight modification of the process may be used. In such cases

it will be found that the diagonal term in one (or more) of the set of Eqs. (2) is small

compared with one (or more) of the other terms in the same equation. Thus in the

solution of (10) with X = J the equation corresponding to r = 0 is

0.00808 a0 4- 0.50021 a2 4- 0.22088 a4 4- 0.08153 a6 + • • • = -2.53213 .

The smallness of the a0 term compared with the «2 term causes the trouble here. The

Ü2 term is therefore eliminated using the equation corresponding to r = 2, giving

ao 4- 3.5793 a4 4- 1.3211 o6 +-= -41.0323 .

If, now, in process (7) the equation corresponding to r = 0 is replaced by

a0(k) = -41.0323 - 3.5793 a/"" - 1.3211 a6(t_1> -

the process is found to converge quite rapidly ; the steps in the iteration are shown

in Table 4. In general, if in the equation of the set (2) corresponding to r = p the

ap term is small compared with the aq term, the latter is eliminated using the

equation corresponding to r = q; and the resulting equation is used to replace the

one corresponding to r = p in (7). Sometimes more than one equation must be

treated in this way, and more than one elimination may be necessary.

Turning now to the eigenvalue problem, the process defined by (8) and (9)

necessarily converges unless [brs] has a second latent root of equal magnitude to A;

the rate of convergence depends on the ratio of A to the next largest latent root. It

may be thought more convenient to replace Eq. (9) by

a'(*) = ~!ñ-7~   i "ro 4- zZ breasik) +   ¿Z  brsas<k-n   ,
A        —  brr>- *-l s=r+l J

so that aPk~1) can be discarded when aPk) is calculated. This change may sometimes

increase the rate of convergence; on the other hand it may prevent the process from

converging altogether (as, for example, if A is close to one of the brr).

Table 4.

Solution of Eq. (10) with X = §.

fc ao «2 GU <l6

1 -41.03 -4.40 -0.09
2 -40.7102 -4.3650 -0.0880 -0.0007
3 -40.7165 -4.3656 V V
4 V V

Discontinuous Kernels. If the kernel K(x, £) is discontinuous or has discon-

tinuous derivatives the above treatment is not invalidated, for K(x, £) may still

possess a Chebyshev series. This series will be slowly convergent, however, and the

computing time will therefore be increased. It frequently happens that all the dis-
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continuities (or discontinuous derivatives) occur on the line x — £, and in this case

the effect of the discontinuities can be removed by proceeding as follows.

First find functions P(x, £), Q(x, £), both of which are continuous and have con-

tinuous derivatives throughout the region — 1 á i ^ 1, -1 í { Í 1, such that

K(x,íP) = P(x,ïP)    for-l^£<x

= Q(x,l)    ïovx <í^l.

The integral equation can then be written as

(12) y(x) = F(x) + X /   P(x, í)y(£)df + X /  Q(x, S)y({)d£ .
J -1 J x

By taking Q(x, £) as zero an equation of the Volterra type is obtained, so that the

work which follows is equally applicable to Fredholm or Volterra equations.

The integral Eq. (12) can be reduced to the set of algebraic Eqs. (2) by putting

Ors Crs    \    ars ,

where crs and drs are defined by

JZ crsTr(x) = i P(x, or.ft)de,
r=0 J-1

JZ   drsTr(x)   =/    Q(x,k)T,($)di-
r-0 J x

Let P(x, £), Q(x, £) have Chebyshev expansions

00    /      oo    /

P(x, 0 = zZzZ Vr*Tr(x)Ts(!p) ,
r=0    s—0

Q(X,Ï)   =    zZzZlrsTr(x)Ts(ï),
r=0    s=0

and let 6rs, <j>rs be defined by the formulae

Ors   — Pr,s—\ Pr,s+1                                     <t>rs   = Qr,s— 1   —   ?r,s+l

OrO  = 0 <¡>r0  = 0

Ur,—s                Ors *Prt—s  ==         *Prs

V—r.s "rs *P—r,s   == 0rs *

It can then be shown that

1    °°    1
Crs  =  "ÏT  ,2-f ~T  \"r+t,s+t 2(      1)  0r,s+( 4" oT—t,s+l

-er+t,s-t + 2(-i)ier,s_i - er_(,s_()

and

1    °°   1
drs  =  "7T  2-j ~T  \      <¡>r+t,s+t 4"  2<j)r,s+t 4>r—t,s+t

o    t~\    t

4" <Í>r+t.s-t  —   2<j>r,s-t 4~ <t>r-t,s—t)  ■
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Once Crs and drs have been obtained, the problem reduces to the solution of the set

of Eqs. (2), which can be carried out as before.

Table 5.

Solution of Eq. (13). (Example 3)

fc       do d2 at ae

1 1.60 0.17
2 1.6397 0.1757 0.0035
3 1.640903 0.175936 0.003547    0.000029
4 1.640957 0.175944 0.003548       V
5 1.640959       V V V
6 V

Example 3. As a final example consider the equation

(13) y(x) = 1 - hi   K(.x,í)y(Ü)dí,
J -i

where

K(x, Ç) = l + Z-x-xÇ,    -lá^i

= l-è + x-xÇ,   igui.

The solution is clearly an even function, and it is only necessary to find 6rs for even

r and s. The steps in the iteration are set out in Table 5. It may be verified that the

final solution agrees with the correct solution, y(x) = cosh x / cosh 1.

University of Bradford

Mathematics Department

Yorkshire, England

1. D. L. Elliott, "The numerical solution of integral equations using Chebyshev polyno-
mials," J. Austral. Math. Soc, v. 1, 1959-60, pp. 344-356. MR 23 #B1131.

2. D. L. Elliott "A Chebyshev series method for the numerical solution of Fredholm integral
equations," Comput. J., v. 6, 1963-64, pp. 102-111. MR 27 #5386.

3. R. E. Scraton, "The solution of linear differential equations in Chebyshev series," Comput.
J., v. 8, 1965, pp. 57-61. MR 32 #603.

4. Modern Computing Methods, National Physical Laboratory, Notes on Applied Science
no. 16, H.M.S.O., London, 1961. MR 22 #8637.

5. J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965. MR
32 #1894.


