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Abstract A new rank-two variable-metric method is derived using Greenstadt's varia-

tional approach [Math. Comp., this issue]. Like the Davidon-Fletcher-Powell (DFP)

variable-metric method, the new method preserves the positive-definiteness of the ap-

proximating matrix. Together with Greenstadt's method, the new method gives rise to a

one-parameter family of variable-metric methods that includes the DFP and rank-one

methods as special cases. It is equivalent to Broyden's one-parameter family [Math.

Comp., v. 21, 1967, pp. 368-381]. Choices for the inverse of the weighting matrix in the

variational approach are given that lead to the derivation of the DFP and rank-one

methods directly.

In the preceding paper [6], Greenstadt derives two variable-metric methods,

using a classical variational approach. Specifically, two iterative formulas are de-

veloped for updating the matrix Hk, (i.e., the inverse of the variable metric), where

Hk is an approximation to the inverse Hessian G_1ixk) of the function being mini-

mized.*

Using the iteration formula

Hk+x = Hk + Ek

to provide revised estimates to the inverse Hessian at each step, Greenstadt solves

for the correction term Ek that minimizes the norm

NiEk) = Tr iWEkWEY)

subject to the conditions

(1) EkT = Ek

and

(2) Ekyk = ok — Hkyk.

IF is a positive-definite symmetric matrix and Tr denotes the trace.

The first condition is a symmetry condition which ensures that all iterates Hk

will be symmetric as long as the initial estimate Ho is chosen to be symmetric. The

second condition ensures that the updated matrix Hk+1 satisfies the equation

Hk+xyk = ok

and hence, that the method is of the "quasi-Newton" type [1].
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* The reader is referred to Greenstadt's paper [6] for a more detailed discussion of variable-

metric methods and for definitions of some of the terms used here.
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If the function being minimized were quadratic, Hk+x would operate on the

vector yk as would the matrix G~l. The norm chosen by Greenstadt is essentially a

weighted Euclidean norm.

Solving this constrained minimization problem using Lagrange multipliers,

Greenstadt obtained the following formula for Ek '■

E* = 7¿T WM + MyoT - Hyi/M - MyyTH
(y My) I

(3) - 71^— K/<0 - ii/Hy)]MyyTM
iv My)

where M = W~\
If the current approximation H to G~l is substituted for M, Greenstadt's first

formula is obtained :

Eh = -¿- \oyTH + HyoT -\l + M£--) HyyTH
(y Hy) I L        \y Hy/ -I

(Throughout the remainder of the note no superscript will indicate the fcth iterate

and a (*) superscript will denote the (fc + l)st iterate.)

If, instead, H* is substituted for M in Eq. (3),

En' = -fr {-°VTH - HyoT + \l + ^floT
(y o)  l L (y a) J

is obtained. The above two correction terms appear to be similar, at least in part,

to both the Davidon-Fletcher-Powell (or DFP) rank-2 correction term

ojY _ Hyi/H
LiR2 T T

o- y      y Hy

and the rank-1 correction term [1], [3], and [7]

r
io-Hy)jo-Hy)

(o- - Hy) y

In fact, all four corrections terms Eh, Eh*, Erx, and ER2 give rise to algorithms that

locate the exact minimum of a strictly convex quadratic objective function of N

variables in N steps. They also result in a matrix H which after those N steps is

exactly equal to G-1. Proofs of this property, which we shall refer to as "exactness"

following Broyden [1], were given for ER2, Erx, and En by Fletcher and Powell [4],

Broyden [1], and Bard [6, Appendix], respectively.

It is easy to show that this property also holds for variable-metric algorithms

with correction term En». For example, Bard's proof may be followed almost en-

tirely, except for some obvious and trivial changes.

Er2 and Eh*, moreover, share the additional property of preserving the positive-

definiteness of the approximating matrix H. This ensures the stability of the cor-

responding variable-metric algorithms that search for a minimum along the direc-

tion —Hg at each step. Fletcher and Powell proved this for ER2. The proof for Eh*

follows from the observation that
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xTiEB* - ER2)x = xTEH*x - xTEB2x = ^^^ ~ f *)(**&)]' ^ 0.
(y a) (y Hy)

It may seem then that the iteration scheme H* = H + EH* would be less likely to

generate a sequence of matrices {Hi} that tends toward singularity than would the

DFP iteration scheme H* = H -f ER2. One should not count this apparent im-

provement too heavily, for the behavior of a variable-metric algorithm and its

convergence to a stationary point depend upon the sequence {Hi} being bounded

above as well as being bounded away from singularity [5].

The resemblances between the correction terms ER2, Erx, Eh and EH* suggest

that each can be written as a linear combination of the others. This is indeed the

case: ER2 and Erx can be expressed directly as weighted sums of E¡¡ and EH*, and

vice versa.

(4)

(5)

where

= jyTHy)EH + iyTo)EH'      (yTHy)EH + (yTH*y)EH>
■*--* ¡X£. rp rp rp rp j

y Hy Ar y o y Hy + y H*y

= (yTHy)2EH - iyTo)2EH' = jyTHy)2EH - (yTH*y)2EH*

R1 ~        (yTHy)2 - (yTo)2 iyTHy)2 - iyTH*y)2

EH = lER2 + (1 - y)ERx ,

EH* = l/yER2 + (1 - l/y)ER1,

= (jt-\7   W '

It is especially interesting that the two variationally derived correction terms

EH and EH* give rise to a one-parameter family of correction terms E = aEH +

(1 — a) EH* whose corresponding variable-metric methods are "exact." The

DFP-rank-2 and rank-1 correction terms are members of this one-parameter family

that correspond to particularly interesting choices for the parameter a. This family

includes all symmetric variable-metric correction terms that have been published

[1], [2], [3], [4], [6], [7].**
In fact, it is equivalent to the one-parameter family given by Broyden's al-

gorithm 2 [1]. The equivalence can be obtained by setting

i«\ (1 - ßyTo)yTHy
(o) « =-t t—,

y Hy A- y o

where ß is Broyden's parameter.

Broyden's algorithm 1 (i.e., the rank-1 algorithm) is just a special case of his

algorithm 2 [1], with ß = l/iyTHy — yTo); a point that seems to have been over-

looked by Broyden himself.

It is also possible to obtain ERl and ER2 directly from Eq. (3) by choice of a

suitable M. For the rank-1 case a choice that works is

Mm = H* - H = E .

However, using Mrx = M in Eq. (3) yields E = ER1 which has rank 1 and, hence,

Mrx has no inverse.

** Davidon's variance algorithm [3] multiplies the rank-1 correction term Esi by a, scalar

function of (gTHg*/g*THg*) so as to ensure the stability of the method.
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Before going further, we note that :

(i) Formula (3) is homogeneous in M ; therefore, replacing M by p M, where p is

a scalar, has no affect on the resultant E.

(ii) M always appears in conjunction with y in formula (3) either as My or as

yTM; therefore, the replacement of (yTHy) H by HyyTH and (yTo)H* = (yTH*y)H*

by H*yyTH* as terms of M has no affect on the resultant E.

Hence the substitution of either

(7) Mrx =H*- Sflg?
y Hy

or

T

(8) MRx=H -^r
o- y

for M in Eq. (3) also yields ER1.

Substitution of any of the forms of Mr2 given below in Eq. (3) is sufficient to

show that all give rise to the DFP correction term ER2.

MR2=(yTHy)ll2H*-(yTo)ll2H,

MR2 = iyTH*yY1,2H* - iyTHyY1/2H ,

\yTHy/      yTHy

\yo/      yo

Although the matrices Mrx and MR2 given by expressions (7) through (9) are,

in general, nonsingular, these choices for M and hence, the corresponding IF's are

not necessarily positive-definite. Thus, their substitution in Eq. (3) is somewhat

contrived. Just what role they play in the variational derivation of the rank-1 and

DFP rank-2 methods remains confusing.
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