
Elliptic Spline Functions and the
Rayleigh-Ritz-Galerkin Method*

By Martin H. Schultz

Abstract. Error estimates for the Rayleigh-Ritz-Galerkin method, using finite-dimensional

spline type spaces, for a class of nonlinear two-point boundary value problems are dis-

cussed. The results of this paper extend and improve recent corresponding results of

B. L. Hulme, F. M. Perrin, H. S. Price, and R. S. Varga.

1. Introduction. The purpose of this paper is to discuss error bounds for the

Rayleigh-Ritz-Galerkin method, using finite-dimensional "spline-type" spaces, for

a class of nonlinear two-point boundary value problems, cf. [2], [3], [4], [5], [7], and

[9]. In particular, we generalize, extend, and simplify the very important techniques

and residts of [7], [9], and [10].

In Section 2, we generalize the interpolation theory results of [11] and [12] to

spline spaces defined by an arbitrary selfadjoint, elliptic, ordinary differential

operator and in Section 3 we analyze and apply these results to the class of non-

linear two-point boundary value problems previously studied extensively in [3]

and [4]. Now we introduce some notations, which will be used throughout this paper.

Let a and b be two fixed real numbers such that — °o < a < b < °o.Ifw£

C°°(a, b) and is real-valued, for each nonnegative integer m and 1 = p S oo, let

ab    m \l/p ^
^Z\D3uix)\vdx\     ,   where D =-j-,

Wm-P denote the closure of the set [u G Cxia, b), u real-valued | ||w||m,P < °° } with

respect to || • \¡m¡p and Wom,p denote the closure of the real-valued functions in

C0°°(a, b), i.e., the real-valued C°°(a, 6)-functions with compact support contained in

the interior of (a, b), wTith respect to || • ||m,p. We remark that u G Wm-P if and only

if m G Cm~l[a, b], Dm~1u is absolutely continuous, and Dmu G Lp[a, b]. Moreover,

u G W0m-P if and only if m G Wm-P and Dku(a) = Dkuib) =0,0 = k = m-l.

Finally, the symbol K will be used repeatedly to denote a positive constant, not

necessarily the same at each occurrence.

2. 7-Elliptic Spline Functions. In this section, we define the concept of a "y-

elliptic spline space" and we define and analyze a particular interpolation mapping

into such a space. In particular, we derive computable lower and upper bounds for

the interpolation error. These results generalize those of [11] and [12].

For each nonnegative integer, M, let <?m denote the set of all partitions, A, of

the interval [a, b] of the form
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(2.1) A:a = xo < xx < ■ ■ ■ < xM < xM+\ = b .

Moreover, let (P = Um=i <?m-

Let

m

E(u) = S i-l)iDiipJix)Diuix)), x G (a, b) ,    wherepm(r) =a>0

for ail x G (a, 6), p,ix) G W-'''2 Pi TF0'", 0 — j — m, and E is y-elliptic, i.e., there

exists a positive constant, y, such that

£ py(.x) (oMaO^ár = 72e(w, u) ,    for ail m G TF<T2 •

If A G (Pm and 2 is an integer such that m — 1 ^ z — 2m — 2, we define the y-

elliptic spline space, S(E, A, z), to be the set of all real-valued functions six) G

C*[a, b] such that on each subinterval (xí, Xi+x), 0 = i = M, 2?(s(a;)) = 0, for

almost all x G ix i, Xi+î).

We remark that in the special case of pm(c) = 1, for all x G [a, b], and p¡(x) = 0,

for all x G [a, b], 0 i£ 7 = m — 1, our definition is identical with the definition of

the deficient splines of degree 2m — 1 of Ahlberg and Nilson, cf. [1]. It is easy to

verify that all the results of this paper remain essentially unchanged if one allows

the number z to depend on the partition points, a;,-, 1 = i ^ M, in such a way that

m — 1 = zixi) = 2m — 2 for all 1 — i = M. The details are left to the reader.

Following [12] we define the interpolation mapping d: C'~l[a, b] —> SiE, A, z)

by dif) = s, where

(2.2) tfsixi) - D'fiXi) ,    (0****1-2—,    láiSM,
l        0 ^ fc ̂  m - 1 ,   ¿ = 0 and M + 1.

We remark that the preceding interpolation mapping corresponds to the Type I

interpolation of [12]. It is easy to modify the results of this paper for the cases in

which the interpolation mapping corresponds to Types II, III, and IV interpolation

of [12]. The details are left to the reader.

We now state and prove analogues of some of the basic results of [12].

Theorem 2.1. The interpolation mapping given by (2.2) is well defined for all

A G P, y-elliptic operators E, and m — 1 ;£ z — 2m — 2.

Proof. By [6, p. 43], there exist 2m linearly independent functions Vkix) G IP"1,2,

1 = k ts. 2m, such that Eivk(x)) = 0 almost everywhere in [a, b], 1 = k g 2m, and

if six) is a SiE, A, z)-spline function, then on each subinterval (x¿, x\+i), 0 = i — M,

six) can be expressed as six) = \5Zl=i on^vYx). Thus, the total number of coefficients

determining s(x) in [a, b] is 2m(M + 1).

We now calculate the number of linear equations which constrain these co-

efficients. The regularity conditions, at the interior partition points, yield (z + l)M

linear constraints and the interpolation conditions yield (2m — 1 — z)M + 2m

linear constraints. Hence, the total number of linear constraints is 2m(M + 1). In

other words, if s(x) exists, it is obtained from a solution of 2m(M -\- 1) linear equa-

tions in 2m (M + 1) unknowns. To establish both the existence and uniqueness of

six), it suffices to show that if Dkfix{) = 0, 0 = k ^ 2m - 2 - z, 1 ^ i ^ M, and

Dkfia) = Dkfib) = 0, 0 = k ^ m - 1, then six) = 0.

Consider
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/b    m M     fxi+1
E Piix)[Djsix)]2dx = E /       PÁ*)[Djsix)]2dx .

a    3=0 ¿=0 J xi

ag by parts, we have

« (», «) = E /        « (s) E ( -1 ) ̂ y[py (a;)!)''« d) ]d*
«—n * -r • *—n

(2-3)

+ III (-D^fl^^íd)]!)"«^
1—0   y=o   *=0

The first sum in (2.3) is zero since s (a;) is a spline function and, using the regularity

and interpolation properties of s (a:), it may be shown that the second sum is also

zero. Hence, 0 = e(s, s) = 7||73ms||§,2 and six) = 0. Q.E.D.

Corollary.

(2.4) eif-af,s) = 0,

for allf G Wm-2, six) G SiE, A, z), E y-elliptic, A G (P, and m - 1 = z S 2m - 2.
Proof. As in (2.3), we have

eif - âf, s) = E /        (/ - */) E i-l)iDi[pJix)Disix)]dx
i=0 " xi j=Q

M m m

E E I
¿_0 j'-O *=0

+ 1Z1ZI: i-l)i+kDi~k[pjix)Disix)]Dk if-âf)
x—x ¿4-1

= 0
x=x{

Q.E.D.

The following result is a generalization of the first integral relation of [12].

Theorem 2.2. Let f G Wm-2, E be a y-elliptic operator, A G <?, and m — 1 ^

z ^ 2m — 2. If âf denotes the S(E, A, z)-interpolate of f, then

(2.5) eif, f)=eif-âf,f- âf) + eiâf, âf) .

Proof. Since e( •, • ) is a bilinear functional, e(/,/) = e((/ — âf) + âf, if — âf) + #/)

= e(/ - âf,f- âf) + 2e(f - âf, âf) + eiâf, âf). The result now follows directly from
the above corollary. Q.E.D.

The following result is a generalization of the second integral relation of [12].

Theorem 2.3. Let f G TF2m'2, E be a y-elliptic operator, A G <P, and m — 1 :£

z = 2m — 2. If âf denotes the SiE, A, z)-interpolate off, then

(2-6) e(f - âf,f- âf) = f (f - âf)Eif)dx .

Proof. As before,

M      fxi+i MM       /"xi^-i M        m        m

eif -df,f-âf)=Z if- âf)Eif - âf)dx +JZJ: E i-Di+k
i=0 ' x{ ¿=0    3=0   4=0

• Di-k[Vjix)Diifix) - âfix))]Dk ifix) - i fix)) "
x=xi

= /  (/ - âf)Eif - âf)dx = j  if- âf)Eif)dx ,
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since âf is a spline function. Q.E.D.

Finally, following Kolmogorov, cf. [8, p. 146], if t and d are positive integers,

let Xd(t) denote the dth eigenvalue of the boundary value problem,

(2.7) i-l)'D2tyix) =\yix) ,       a<x<b,

(2.8) Dkyia) = Dky(b) = 0 ,        t = k = 2t - 1,

where the Xd are arranged in order of increasing magnitude and repeated according

to their multiplicity. We remark that the problem (2.7) — (2.8) has a countably

infinite number of eigenvalues, all of which are nonnegative, and it may be shown

that

Xrf= (r-z-r)  d"\-1 + O^1)] .    as * < d -* °°

Now we obtain explicit upper and lower bounds for the quantities A(i?, p, z, j),

1 ;£ m, p = m or 2m, m — 1 = z g 2m — 2, and 0 — j = m, defined by

(2.9) AiE, m, z,j) m sup \\\D''if - í/)||o.«/[«(/, f)fn\f G Wm'2, e(/, /) * 0}

and

(2.10) AiE,2m,z,j) m sup {||Z>'(/- í/)||0.i/||tf(/)lk«|/E IF2"*'2, ||tf(/)||0li * 0} .

Letting

Ä = max  ixi+x — Xi) and A =  min   ixi+x — x/)
OgiSJli OgiSAf

for all A G ó°m, we have the following generalization of Theorem 3.4 of [11] and

Theorem 7 of [12].

Theorem 2.4.

(2.11) A7+f (m - j) = AiE, m, z,j) = 7-K......y(ar~' ,

where

(2.12) d m dim [D'iSiE, A, z)]\

and

Km,m.z.j =1,    ifm— 1 -^ z ■=2m — 2,j = m,

( 1 \m~i

= I — ) ,    if m — 1 = z, 0 ^ j — m — 1,

(2.13) jz + 2 - m)! on^-<-o o
= -—-,    if m — 1 ^ z = 2m — 2, 0 ^ j — 2m — 2 — z ,

AT

= (2 + 2 ~ m)-      i/w_l<2<2m-2, 2m-2-z<7<m-l,
f.ir

for all y-elliptic operators E, 0  — M,  A G <Pm, m  —   1   =   z   =   2m   —   2,

and 0 i= j' = m.
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Proof. First, we prove the right-hand inequality of (2.11). If m — 1 g z = 2m —

2 and j = m, the result follows directly from Theorem 2.2.

Otherwise, D'if - éj)ixt) = 0, 1 á i * M, 0 = j g 2m - 2 - z, and by the
Rayleigh-Ritz inequality, cf. [5, p. 184],

fxi+i / T \2    fxi+l

J        (Z>'(/ - âf)(c))2dx = (-f)   I        iD'+\f - âf)ix))2dx ,
(2.14) xi u/     ,¡

0 á i á 2m - 2 - 2 .

Summing both sides of (2.14) with respect to i from 0 to M, we obtain

(2.15) Wif-af)üo,2 = A¡¡Dj+\f-af)\\o,2,       0^j = 2m-2-z.
IT

Using (2.15) repeatedly, we obtain

/   T \2m-l-2-3

(2.16) ¡¡D'if - ¿/)||o,2 á \~) ¡\D2m-l~Yf - äf)\W* ■

Hence, if 2m — 1 — z = m, i.e., z = m — 1, then

(2.17) ¡¡D'Xf - ¿/)Ho.2 ̂ (j~y~3iÄ)m-i\\Dmfh*,

and the required result follows from the 7-ellipticity of E.

Otherwise, since m = z, applying Rolle's Theorem to D2m"2~zif — âf) G

Cz~m+1[a,b], we have that for each 0 i>j =z — m+ 1, there exist points {£!iy)}£äWm

[a, b] such that

D2m~2~z+iif- df)ihU)) =0,

(2.18) 0áj'|M-l- (2m - 2 - z) = z - m+ 1 ,

0 < I < M + 1 - j ,

(2.19) a = |o(y) < tili> < ■ ■ ■ < tu+x-i = b ,       O^j = z-m+l,

(2.20) {iw ^ |/y+1) < £lx,   for all 0 = l = M + 1 - j ,    0£¿ác-m+l,

and

(2.21) |£& - {,(i>| g (j + 1)Ä ,       0 g Ï á Jf - i,   0ájS«-m + l,

i.e., choose £¡<°> = xh 0 = l á M + 1.

Thus, applying the Rayleigh-Ritz inequality, we have

/ {i+i
yi,«> (p***-"(j - âf)ix))2dx

= [Í¿^J^]2 //jf1 (D2-s-+«+1)(/ - */)(x))«cfa

for all 0 ^ Z ^ M - j, 0 g j ^ z - m + 1. Summing (2.22) with respect to I
from 0 to M — 7, we have
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||7>2m-2-z+y(/ - af)¡¡o¡2 = ij + 1)A \\D9m^^Ht*i)(J - âf)\\oA ,

(2.23) *
0 s= j: ;£ z — ??i + 1

Using (2.23) repeatedly, we have

¡¡D^-'if- âf)Ho.2 = {z t-lZx™}' iA)m~l2m-l-Y\Dmif-af)\¡0,2

(2.24) *
(z + 2 — to)! /T\2-m+ii|r)mfii

2_m+i      (A;       ||l> j||o,2 .
AT

Combining (2.16) with (2.24), we have that

(2.25)   \\DYf - ¿/)||o,2 Í(Z + \~ m)! (Ar-y[|7)m/||o,2,    ii0^j = 2m-2-z.

Otherwise, it follows from (2.23) that

(z + 2 - m)\
(2.26) ¡¡DYf - á/)||o,2 ̂  y^"     •        ll£>™/llo.» •

The required result now follows from (2.25), (2.26), and the -y-ellipticity of E.

Finally, we remark that the left-hand inequality of (2.11) follows directly from

a fundamental result of Kolmogorov, cf. [8, p. 146]. Q.E.D.

The next result generalizes Theorem 3.5 of [11] and Theorem 9 of [12].

Theorem 2.5.

(2.27) X7+f(2m - j) = HE, 2m, z,j) ^ y2Km,2m,,jiÄ)2m-j,

where

(2.28) d = dim{Dj[SiE, A, z)]}

and

(2.29) Äm,2m,z,3 =   iKm¡m¡zj) (Äm,mi2io) ,

for all y-elliptic operators E, 0 ^ M, A G (Pm, m — 1 ^ z = 2m — 2, and 0 =

j á ni.

Proof. Applying the Cauchy-Schwarz inequality to the second integral relation

and using the -y-ellipticity of E, we have

(2.30) \\Dmif - af)¡\l,2 = y2eif - if, f - âf) < y2¡¡Eif)¡\oY\f - âf\\o.2.

Applying the proof of Theorem 2.4, we have

(2.31) Wif - âf)Ho,2 S KwJ¡\Dmif - âf)\\o,YZ)m-J -

Using (2.31) for the special case of j = 0 in (2.30) yields (2.32)

(2.32) \\Dmif - âf)Ho,2 S 72||^(/)||o,2irm,m,2,0(Ä)ra .

Using (2.32) to bound the right-hand side of (2.31) gives us the right-hand in-

equality of (2.27). The left-hand inequality of (2.27) follows as in Theorem 2.4.

Q.E.D.
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Now we obtain explicit upper bounds for the quantities AM(i?, p, z, j), 1 :S m,

p = to or 2m, to — 1 — z — 2m — 2, and 0 = j = m, defined by

(2.33)    AYE, m, z, j) = snp {¡\Djif - af)¡¡o,J[eif, f)f2\f G Wm'2,eif, f) * 0]

and

AYE, 2m, z,j) = sup {¡\Djif - af)¡U,J¡¡Eif)¡¡o.2¡f G W2m'2 ,

P?(/)IJ0,2^O}.
(2.34)

As a generalization of Theorem 5.1 of [11] and Theorem 6 of [12], we have

Theorem 2.6.

(2.35)

where

TC" =
ÍA-ni.m.z.i —

(2.36)

AxiE,m,z,j) ^ yKZ.m.z.iiA)
m-i—X /2

Km.m.z,i+\,   ifm—l=z,    0 ■= j = m — 1 ,

Km,m,z,j+x ,   ifm— 1 < z ^ 2m - 2 ,

0¿j-2m-2-z,

0' - 2m + 3 + zY"Km,m,z,j+x ,   ifm- 1 <z = 2m - 2 ,

2m — 2 — z < j ■— m — 1,

for all y-elliptic operators E, 0 ;2 M, A G (Pm, to — 1 ^ z í= 2m — 2, and 0 —

j S m — 1.

Proof. We give the proof in the special case of m — 1 = z, 0 ;= j = m — 1, as

the proof in the other cases is analogous. Given any x G [a, b], there exists a point

y G [a, b] such that Dj(f — af)(y) = 0 and ¡x — y\ ^Ä . Hence,

D\f-âf)i *)=/V+I if-âf)it)dt

and

P>'(/-a/)lk.2£ (Ä)w'p>'+1 (/-*/)Ik,

The result now follows from applying Theorem 2.4 to the right-hand side of the

preceding inequality. Q.E.D.

As in Theorem 2.6, we have the following result, as a generalization of Theorem

5.2 of [11] and Theorem 8 of [12].

Theorem 2.7.

(2.37)

where

re** =
rA.m,2m,z,i+l   —

(2.38)

AYE, 2m, z,j) ^ y2KZ,2m,z.iiA)
1m—i-\l%

K„ ,j+x ,    ifm—l = z,    0 < j = m — 1,

7fm,2m,2,3+i ,    ifm — 1 < z ^ 2m — 2,

0^¿^2to-2-z,

(j — 2m + 3 -f z)    Km,2m,z.i+i ,    if m — 1 < z ■= 2m — 2 ,

2to - 2 - z < j,
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for all y-elliptic operators E, 0 = M, A G (Pm, m— l=z = 2m — 2, and 0 g

j i= to — 1.

In some special cases the preceding results may be strengthened. Let

A(D2m, p, z, j),     1 1Í m, m ■= p ■= 2m, to— 1^z^2to — 2

be defined by

(2.39) A(7)2m, p, z,j) = sup {¡¡Djif - af)¡U.Y¡¡Dpf¡¡o,2\f G Wp'2, ||£>p/l|o,2 * 0] .

Theorem 2.8.

(2.40) \7U\p - j) = MD2m, p, z, j) ^ K^AÂ)*-!.

where

(2.41) d m dim {D1'[SiD2m, A, z)]]

and

(2.42) Kn,PtZ,j s !«;,.,_,, + Xm,2m„,r2<1/2;   n~P,L(2p ̂'2m)J (¿j       /

for all 1 ^ m, 0 ^ If, A G (Pm, m < p < 2to, 4to - 2p - 1 ^ z ^ 2m - 2, and
0 = j = m.

Proof. See Theorem 3.6 of [11]. Q.E.D.

Let A00(D2m, p, z,j), 1 ■— m,m ■= p ^ 2m, m — 1 ■= z = 2m — 2he defined by

(2.43) A„iD2m,p,z,j) m sup {||7J»y(/- á/)||o,M/||7)7l|o,2|/G ̂ ^IlDVIlo,, * 0} .

Theorem 2.9.

(2.44) AYD2m, p, z,j) ^ K^.zAÄ)^-1'2,

where

(2.45;   KZ.p.z.i = \\Kp,p,2m-i,j + KZ.ïm.z.i-2        n~p I  .     _ 2mTÎ J \A/       J'

/or aZZ 1 ^ to, 0 = M, A G <Pm, m < p < 2m, Am - 2p - 1 ^ z = 2m - 2, and

0   ¿ j   ^  TO  —   1.

Proof. See Theorem 5.3 of [11]. Q.E.D.

Let A00,M(Z)2m, p, z,j), 1 =m,m = p ^ 2m, to — 1 ^ z :£ 2to — 2 be defined by

/o 4fi\      Ax¡co\lJ    , p, Z, J)

- sup {||Z>''(/ - */)|k./||D7lk,|/E Wp"°,    ||Z>7lk. * 0} .
Theorem 2.10. There exists a positive constant, K, such that

(2.47) Ax,YD2m, p,m-l)= If (A)*"',

/or aZZ 1 ^ m, 0 ^ M, A G (P», m ^ p = 2m, and 0 ^ j = m — 1.

Using a result of M. E. Rose, we can prove an analogue of Theorem 2.10 for

second-order 7-elliptic operators. If E is a second-order 7-elliptic operator, let

(2.48) A„,YE,2,0,0) - sup {||/ - af¡¡o,J¡\D2f\\oJf G W2'°°, ||7>2/||„,œ * 0] .
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Theorem 2.11. If E is a second-order y-elliptic operator, there exists a positive

constant, K, such that

(2.49) A...(.E, 2, 0, 0) ^ ÍC(A)2,

for all 0 = M and A G <Pm-
Proof. By a theorem of M. E. Rose, cf. [10, p. 183],

'b

if-âf)ix) = / HaÍx, y)Eif)(y)dy ,    for all A G (Puia, b), f G K¿-[a, b] ,

where HAix, y) = E^=° Ki(x, y) and Ki(x, y) equals the Green's function for

E[u](x) on [xi, xi+x] subject to the boundary conditions w(a\) = w(a:»+i) = 0 if a;,

y G [x¡, xi+x] and KA\x, y) = 0 if either or both x, y G [xí, Xi+x]. Thus, if

I Yi+l
x G [xí,Xi+x], ¡if - af)(x)¡ = \J _    Ki(x, y)Eif)iy)dy

= ¡¡Kiix,y)\\LX[xi,xi+l]¡¡Eif)¡¡o.Ya).

Hence, it suffices to find a bound for Ka[x, y), 0 = i = M, given that x and y G

[Xi, X i'4-lj.

Following [6], we have that

Ki(x, y) = -Vxix)viiy)/C   fora; g y ,

where E[vx](x) = E[v2]ix) = 0, for all a; G [xí,xí+x],vxÍXí) = 0,Dvx(x/) = l,v2(x/) =

1, v2(ci+x) = 0, and

„ s  yi(a;)       y2(a:)

Dvx(x)    Dv2(x)

is a constant, and Ki(r, y) = if ¿(?y, a;) for all x ^ y.li w2 = pix)Dvx(x), then

1)
Vl

+

0       -
p(x)

r¡

Lw2J      Lqix) 0   JLw2

and if Uiix) = w2ix) — p(x/),

1

D
Vl

+

0
p(x)

Lm2J       lqix) 0   J ÍÍ2 J

0

LOJ

+

and
VxiXi)

W2(Xi) _

0

■P(Xi).

pixi)/p(c)

0

0

Loj

and

[

Vx(Ci)

U2(Ci)

0

0J

It is easy to verify that

Vx(x)

Uiix) _

j   exp(-J   A(t)dtj
-p(x,)/pix)

0
ds ,
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where

A(Z) =
O

1

Pit)

o .

and hence

|»i(¡r)| S [v2ix) + u Ux)]1'2

\ - r Ait)dt]L\\-pixiyp(x)
L    J s _111 0

a    max    ]||exp
x,sG[a,b]

iXi+l Xi)

where || • ¡|2 denotes the Euclidean norm. Thus, we have shown that there exists a

positive constant, K, such that ¡vxix)¡ = 7f(Ä) Similarly, we may show that there

exists a positive constant, K, such that ¡v2iy)\ ^ K and hence ¡Kiix, y)\ —

(K2/c) (Ä). Q.E.D.

3. Nonlinear Two-Point Boundary Value Problems. We consider the differential

equation

(3.1) E[uix)] = fix, u(x)) ,        a = x = b ,

subject to the boundary conditions

(3.2) Dkuia) = DkuQ>) = 0,    0 = k = m - 1,

where

m

E[uix)] m E i-l)iDi[pjix)Diuix)],    pjix) G W1'* O IF0"0,    0^j = m,

T-mix) ^ w > 0 for all x G [a, b], and there exists a positive constant, y, such that

rb     m

<3.3) \\Dmw¡¡WM
/b     m

Y^Piix)[D'wix)]2dx
u     3 = 0

for all w G W0m'2.

Let

'(3.4) s      jnf     Jj_E j=o p j 0*0 [¿^ 0*0 l2^' > o
wGlTW.^w^O ja[wix)]2dx

and/(a;, 7/) be a real-valued function defined on [a, b] X R, measurable in x for every

u in R and such that

(3.5)
fjx, u) - fjx, v)

u — v
_? P < A

for almost all x G [a, b] and all u, v (E R with it ?¿ y and for each c > 0 there exists

a finite constant M(c) such that

.(3.6) fjx, u) - fjx, v)
u — V

^ Mic)
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for almost all x G [a, b] and all u, v E R with |m| = c, \v\ _i c, and u 9e v.

As in [3], [4], [7], and [9], we consider the Rayleigh-Ritz-Galerkin procedure for

approximating the solution to (3.1)—(3.2), i.e., if S is an N-dimensional subspace of

Wom'2 with linearly independent basis functions {5¿(a;)}^Li, we seek an approxi-

mation of the form us = E^=i ßiBiix), where the coefficients {/3»}^=i are determined

by the nonlinear, algebraic system

(3-7) AQ = F(g) ,

where

and

¿ = (f   JZpYx)DkBiix)DkBjix)dx)
Va    í-=0 /

fa f\x, jZßiBYY)Bjix)dxjF(5)s

From [3] and [4], we have the following fundamental result.

Theorem 3.1. With the preceding hypotheses, there exists a unique generalized

solution, u, to (3.1)—(3.2) over Wom-2,

(3.8) ¿l2(u,u) ^7^~l|/fe0)||o,2,

the Rayleigh-Ritz-Galerkin procedure gives a unique approximation, Us, and

,i/s

A — u
(3-9) e1/2ius, us) ^ y —— ¡¡fix, 0)||0,2

The purpose of this section is to discuss the size of the error for the special cases

of elliptic spline subspaces which are somehow related to the differential operator E.

We begin with the linear case, i.e., fix, u) is independent of u, and subspaces of

i?-splines. Generalizing [7], [9], and [10], we have

Theorem 3.2. If fix, u) is independent of u, A E <P, m — 1 = z = 2m — 2,

and S = SiE, A, z) f) W0m-2, then us = au, where â is the interpolation mapping

ofCm~i[a, b] into SiE, A, z).

Proof. Using the notation of Section 1, it is easy to verify that e(us, Bf) —

if, B/)L\atb) and e(u, Bf) = (/, Bf)L\a<b) for all 1 ■= j = N. Hence,

(3.10) e(us - u, Bj) = 0   for all 1 á j á N .

Moreover, from the Corollary to Theorem 2.1,

(3.11) e(u - au, Bj) = 0   for sdl 1 ^ j = N

and hence

e(us - au, Bj) = 0   for sdll ^j ^N

and

2
< 0 = e(us — au, us — â) = y\¡us — au¡¡m,2 . Q.E.D.

Combining Theorem 3.2 with the results of Section 2 and Theorem 2 of [2], we-



76 MARTIN   H.   SCHULTZ

obtain the following

Corollary. Let fix, u) be independent of u.

(i) If u G W2m'2 and S = S(E, A, z) H TF0m'2, then

||« - ua\\i,t ^ y2Km,2m,z,j¡\fix)¡¡o.2iA)2m-},       0 ^ j = to ,

and

II« - «ally.« á Y2^,2„i,z,JH/0r)||o,2(Ä)2",-J'-1/2,        0 g 7 g to - 1 ,

for all A G (P and m — 1 fí z = 2m — 2.
(ii) 7/ m G Wp'\ E = D2m, and S = SiD2m, A, z) fl W0m-2, then

II« - u*||/.i â 7im,p,,,3||Z)pM||o.2(Ä)p-y,        0 = j = to ,

and

II« - «all,.. ^ KZ,Pl„j\\Dpu¡¡o,iiA)p-i-112,       0^j = m-l,

for all A G <P,m < p < 2m, and 4to — 2p — 1 ;£ z ^ 2m — 2.
(iii) Lei <? = D2m and S = S(7)2™, A, m - 1) Pi IFom'2. 7/ m G IF*-2,

II« - w«||y,s -s C3,m,p>2,2||7)pM||o,2(A)!'_:',        0 = j = m ,

for all A G (P and m = p ^ 2m, where Cj,m,p¡2i2 is the constant defined in Eq. (2.10)

of [2]. If u G Wp-,

\\u — us\\j,x ^ Cj,m,p,2,t\\Dpu\\o,KiÄ)p~1 0 = j = m ,

for all A G (P etnd m = p 5= 2to.
(iv) If to = 1, « G IF2-00, and S = S(E, A, 0) (\ Wo1-2, there exists a positive

constant, K, such that \\u — ws||o,oo â KiA)2,for all A G (P-

Now we consider the nonlinear case of Eq. (3.1). The following theorem is a

generalization of analogous results of [7] and [9]. We remark that its proof is con-

siderably simpler than the proofs of the referenced results.

Theorem 3.3. If (3.1)—(3.7) hold and S = SiE, A, z) H W0m'2, then

A1'2
(3.12) el2iâu - us, au — us) ^     _ ■ ||/(a;, «) - fix, au)¡¡0.2,

for all A G <P and m — 1 ^ z = 2m — 2.
Proof. Using the above hypotheses and the Corollary to Theorem 2.1, we have

( 1 —— ¡eiâu — Us, au — us) _; eiâu — us, au — us) — p J    iâu — us) dx

= eiâu — us, au — us)

_   Y \fix,âu)-fix,us)\âu _      fdz
Ja    L âU   —   Us A

Y
= eiâu, au — us) — I    fix, âu)iâu — us)dx

J a

r
= e(u, au — Us) — j    fix, au) iâu — us)dx

"'a

— j   lfix, «) — fix, âu)]iâu — us)dx .
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The result follows by applying the Cauchy-Schwarz inequality and definition (3.4).

Q.E.D.
Corollary. If (3.1)—(3.7) hold and S = S(E, A, z) C\ W0m-2, then

a 1/2

(3.2)        \\Dmiâu - us)¡¡Y(a.b) _: -}-Mic)\\u - âu\\o,2   for all A G <P
A — p

and m — 1 — z = 2m — 2, where,

(3.13) c - \ {b     a¿x       y f— ¡¡fix, 0)|| o,2

and M(c) is given by (3.6).

Proof. By (2.5), eiâu, au) ^ e(u, u). Hence, using (3.8), we have

Al/2

eiâu, au) g e(u, u) = ■   _    ¡¡f(x, 0)||0,2

and thus by the Rayleigh-Ritz inequality, cf. [5, p. 184], and the inequality

IMk« ^ 1(6 - a)1/2||7)w||o,2, for all w G W0m'2, ||ä«||o.« _? c and ||m||0i. = c,

where c is given in (3.13). The result now follows by combining these a priori bounds

with (3.3), (3.6), and (3.12). Q.E.D.
From the Rayleigh-Ritz and triangle inequalities and the preceding result, we

have

Theorem 3.4. If (3.1)—(3.7) hold and S = SiE, A, z) D Wom-2, then

(h —     \m~i      A1/2

\\Dsiu - ttfl)||..i Ú \\DYu - áu)||o.i + (--^)      T^— Mic)
(3.14) V   v   7       A_M

• ||w — au¡¡ o,2,       0 = j 5= m ,

and

.     /,    _      \m—3—1/2 ,1/2

Wiu - us)h,x Ú Win - itt)||0i- + f *      ffl¿.- f-^-M(c)

(3.15) - "
■ \\u - au¡¡o,x ,       0 á i =5 m — 1 ,

/or aZZ A G (P and m- 1 ¿2 ^ 2m — 2, w/iere ¿Ae constant c is given by (3.13) and

Mic) by (3.6).
We remark that as was done in the Corollary to Theorem 3.2, we can now com-

bine the results of Theorem 3.3 with those of Section 1 to obtain specific error

bounds. We leave the details to the reader.

As in [3], [4], [7], and [9], one expects that more accurate Rayleigh-Ritz-Galerkin

approximations are possible if the solution u is particularly smooth, i.e., D'u exists

for some j > 2m and if we use a "spline-type" space of "higher degree" than

SiE, A, z). We now generalize and simplify the construction and proofs of [7] and

[9].
For each positive integer, t, we consider the differential operator

m

(3.16) E'[u] = \TlDi+2t[pJix)Di+2tuix)] .
3=0

From inequality (3.3), we have that
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/b    m
¿Zpi(x)[Dj+2twix)]2dx = y2etiw,w) ,

for ail w G Wom+n'2- Thus, following Section 1, we may define the space SiE', A, z)

G Wm+2t'2, for all A E (P and m + 2i - 1 à z á 2m + 2Z - 2.

Theorem 3.5. 7/ (3.1)—(3.7) hold and S = D^SiE1, A, z) fï IF0m'2, then there

exists a positive constant, K, such that

(3.17) ¡¡DYu-us^oAÛKHD^iây-yYo,,,       Oújúm,

and

(3.18) ||7JJ'(n - ttí)||o.. Ú K\\Dj+2tiây - y)\\0.a ,       Oújúm-1,

where

yix)
/x  j-x2t rx2

J       • ■ ■ J    uixx)dxxdx2 ■ ■ ■ dxit = 91l(n)

and â is the interpolation mapping into SiE', A, z), for all A E <P, m -f- 2i — 1 ;£

z = 2m + 21 - 2.

Proof. We prove only (3.17) as the proof of (3.18) is essentially identical. As in

Theorem 3.4, it suffices to show that there exists a positive constant, K, such that

\\D~iu. - D2tây)||0,2 ^ K\\D2t(<J - ây)\\0,2.

As in the proof of Theorem 3.3,

( 1 — ~JeiD2tây - us, D2tây - us)

= e(D2tây — us, D2tây — us)    — p I    (D2lây — us)2dx
a

g eilYlây, D2tây - us)    - j   fix, D2tây)iD2tây - us)dx
•a

= etiây,ây -m.ius))    -      fix, D2tây)iD2tây - us)dx
J a

= et(y,ây - 3ir(«s))    - /   f(x,D2tây)iD2tây - us)dx

= /  [fix, D2ty) - fix, D2tây)] iDuây - us)dx .

Applying the triangle inequality and (3.4), we have

exl2iD2tây - us,D2tây - us) = -~ ¡¡fix, D2ty) - fix, D2tây)\\o,2 .

The required result follows in the same way as the Corollary to Theorem 3.3, since
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|£>2Wlk» = \\D2ty - D2tây\\o,„ + \\Duy\\0,„

1     Ck \m—1/2

i^^ä— \\Dm+U(y - ^)llo,2 + \\B2ty\\o
¿ AT

it \m—1/2
(o - a)      T „ 1/2

<

<

et' iy - ây,y - ây) + \\D  y||o,„
¿AT

/i \m—1/2

1   "I:    Te//20/,7/) + |l7)2Vllo.M,
Z7T

by Theorem 2.2. Q.E.D.
We now state an analogue of part (i) of the Corollary of Theorem 3.2 to illustrate

the power of the result of Theorem 3.5. The details of the analogues of the other

parts of the Corollary of Theorem 3.2 are similar and are left to the reader.

Corollary. Let (3.1)—(3.7) hold and S = D2iSiE>, A, z) C\ Wam<2. If u E
-pr/2m+2f,2 Q,en ihere exists a positive constant, K, such that

II« - «sllí.2 á K(Ä)2m+2i-in||2m+2i,2,        0 = j = m ,

and

II« - walk« è KiA)2m+2í-i+1'2\\u\\2m+2í,2,       Oújúm.

Proof. Since y = 3U(n) E W2m+it-2, the results follow from Theorems 2.5, 2.7,

and 3.5. Q.E.D.
Finally, we make some remarks about the use of subspaces formed from low-

order perturbations of the differential operator E. If we wish to solve (3.1)—(3.2)

and Ê[u] = E?=o Dj[qjix)D'u] is such that qj(c) = pj(c), 1 — j = m, and qo(c)

is such that there exists a n > 0 such that

/b    m
E 3yix) [Djw ix) ]2dx   for all w E TF0m'2,

o     3=0

then we rewrite (3.1) as

(3.19) É[u] = fix, u) + Ë[u] - E[u] = g(x, u) .

It is easy to verify that if S is a finite-dimensional subspace of Wam,i, then the

Rayleigh-Ritz-Galerkin equations for S for the problem (3.19)—(3.2) are identical

to those for the problem (3.1)—(3.2). Hence, if we use a subspace of the form S =

D2tSiÉ\ A, z) Pi IFom'2 for some t = 0, A G <?, and m - 1 ^ z ^ 2m - 2, the

preceding analysis applies. The details are left to the reader.
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