Integer sequences having prescribed quadratic character

Authors:
D. H. Lehmer, Emma Lehmer and Daniel Shanks

Journal:
Math. Comp. **24** (1970), 433-451

MSC:
Primary 10.03

DOI:
https://doi.org/10.1090/S0025-5718-1970-0271006-X

MathSciNet review:
0271006

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For the odd primes , we determine integer sequences such that the Legendre symbol for all for a prescribed array of signs ; (i.e., for a prescribed quadratic character). We examine six quadratic characters having special interest and applications. We present tables of these and examine some applications, particularly to questions concerning extreme values for the smallest primitive root (of a prime ), the class number of the quadratic field , the real Dirichlet functions, and quadratic character sums.

**[1]**W. H. Mills,*Characters with preassigned values*, Canadian J. Math.**15**(1963), 169–171. MR**156828**, https://doi.org/10.4153/CJM-1963-019-3**[2]**D. H. Lehmer, "An announcement concerning the Delay Line Sieve DLS-127,"*Math. Comp.*, v. 20, 1966, pp. 645-646.**[3]**Marshall Hall,*Quadratic residues in factorization*, Bull. Amer. Math. Soc.**39**(1933), no. 10, 758–763. MR**1562725**, https://doi.org/10.1090/S0002-9904-1933-05730-0**[4]**Allan Cobham,*The Recognition Problem for the Set of Perfect Squares*, IBM Research Paper, R.C. 1704, April 26, 1966.**[5]**M. Kraitchik,*Recherches sur la Théorie des Nombres*. Vol. 1, Paris, 1924, pp. 41-46.**[6]**D. H. Lehmer,*The Mechanical Combination of Linear Forms*, Amer. Math. Monthly**35**(1928), no. 3, 114–121. MR**1521394**, https://doi.org/10.2307/2299504**[7]**D. H. Lehmer,*A sieve problem on“pseudo-squares.”*, Math. Tables Aids Comput.**8**(1954), 241–242. MR**63388**, https://doi.org/10.1090/S0025-5718-1954-0063388-X**[8]**A. E. Western and J. C. P. Miller,*Tables of indices and primitive roots*, Royal Society Mathematical Tables, Vol. 9, Published for the Royal Society at the Cambridge University Press, London, 1968. MR**0246488****[9]**Daniel Shanks,*Class number, a theory of factorization, and genera*, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969) Amer. Math. Soc., Providence, R.I., 1971, pp. 415–440. MR**0316385****[10]**N. G. W. H. Beeger,*Report on some calculations of prime numbers*, Nieuw Arch. Wiskde**20**(1939), 48–50. MR**0000393****[11]**Luigi Poletti, "Atlante di centomila numeri primi di ordine quadratico entro cinque miliardi," UMT 62,*MTAC*, v. 2, 1947, p. 354.**[12]**H. M. Stark,*A complete determination of the complex quadratic fields of class-number one*, Michigan Math. J.**14**(1967), 1–27. MR**222050****[13]**D. H. Lehmer, "On the function ,"*Sphinx*, v. 6, 1936, pp. 212-214; v. 7, 1937, p. 40; v. 9, 1939, pp. 83-85.**[14]**Mohan Lal & Daniel Shanks, "Class numbers and a high density of primes." (To appear.)**[15]**R. Ayoub, S. Chowla, and H. Walum,*On sums involving quadratic characters*, J. London Math. Soc.**42**(1967), 152–154. MR**204382**, https://doi.org/10.1112/jlms/s1-42.1.152**[16]**Daniel Shanks,*Generalized Euler and class numbers*, Math. Comp.**21**(1967), 689–694. MR**223295**, https://doi.org/10.1090/S0025-5718-1967-0223295-5**[17]**Daniel Shanks,*On the conjecture of Hardy & Littlewood concerning the number of primes of the form 𝑛²+𝑎*, Math. Comp.**14**(1960), 320–332. MR**120203**, https://doi.org/10.1090/S0025-5718-1960-0120203-6**[18]**Daniel Shanks,*Supplementary data and remarks concerning a Hardy-Littlewood conjecture*, Math. Comp.**17**(1963), 188–193. MR**159797**, https://doi.org/10.1090/S0025-5718-1963-0159797-6**[19]**Daniel Shanks,*On Gauss’s class number problems*, Math. Comp.**23**(1969), 151–163. MR**262204**, https://doi.org/10.1090/S0025-5718-1969-0262204-1**[20]**Edward T. Ordman, "Tables of class numbers for negative prime discriminants," UMT 29,*Math. Comp.*, v. 23, 1969, p. 458.**[21]**Morris Newman,*Note on partitions modulo 5*, Math. Comp.**21**(1967), 481–482. MR**227127**, https://doi.org/10.1090/S0025-5718-1967-0227127-0**[22]**Peter Weinberger,*Dissertation*, University of California, Berkeley, Calif., June, 1969.**[23]**Edgar Karst,*The congruence 2^{𝑝-1}≡1 (𝑚𝑜𝑑 𝑝²) and quadratic forms with high density of primes*, Elem. Math.**22**(1967), 85–88. MR**215777****[24]**C. L. Siegel, "Über die Classenzahl quadratischer Zahlkorper,"*Acta Arith.*, v. 1, 1935, pp. 83-86.**[25]**E. Landau,*Handbuch der Lehre von der Verteilung der Primzahlen*. Bände 2, Chelsea, New York, 1953, §186, "Euler's Reihen," pp. 673-676. MR**16**, 904.

Retrieve articles in *Mathematics of Computation*
with MSC:
10.03

Retrieve articles in all journals with MSC: 10.03

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1970-0271006-X

Keywords:
Quadratic character,
sieves,
primitive roots,
class number,
Dirichlet functions,
quadratic character sums,
pseudo-squares

Article copyright:
© Copyright 1970
American Mathematical Society