Computation of best one-sided $L_{1}$ approximation
HTML articles powered by AMS MathViewer
- by James T. Lewis PDF
- Math. Comp. 24 (1970), 529-536 Request permission
Abstract:
A computational procedure based on linear programming is presented for finding the best one-sided ${L_1}$ approximation to a given function. A theorem which ensures that the computational procedure yields approximations which converge to the best approximation is proved. Some numerical examples are discussed.References
- R. Bojanić and R. DeVore, On polynomials of best one sided approximation, Enseign. Math. (2) 12 (1966), 139–164. MR 213790
- Philip J. Davis, Interpolation and approximation, Blaisdell Publishing Co. [Ginn and Co.], New York-Toronto-London, 1963. MR 0157156
- Ronald DeVore, One-sided approximation of functions, J. Approximation Theory 1 (1968), no. 1, 11–25. MR 230018, DOI 10.1016/0021-9045(68)90054-3
- Saul I. Gass, Linear programming: methods and applications, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1958. MR 0096554
- G. Hadley, Linear programming, Addison-Wesley Series in Industrial Management, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1962. MR 0135622 W. Kammerer, Optimal Approximations of Functions: One-Sided Approximation and Extrema Preserving Approximations, Doctoral Thesis, Univ. of Wisconsin, Madison, Wisconsin, 1959.
- P.-J. Laurent, Approximation uniforme de fonctions continues sur un compact avec contraintes de type inégalité, Rev. Française Informat. Recherche Opérationnelle 1 (1967), no. 5, 81–95 (French). MR 0226265 J. T. Lewis, Approximation with Convex Constraints, Doctoral thesis, Brown University, Providence, R. I., 1969.
- T. S. Motzkin and J. L. Walsh, Least $p$th power polynomials on a finite point set, Trans. Amer. Math. Soc. 83 (1956), 371–396. MR 81991, DOI 10.1090/S0002-9947-1956-0081991-6
- Philip Rabinowitz, Applications of linear programming to numerical analysis, SIAM Rev. 10 (1968), 121–159. MR 226810, DOI 10.1137/1010029
- Theodore J. Rivlin, An introduction to the approximation of functions, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1969. MR 0249885
Additional Information
- © Copyright 1970 American Mathematical Society
- Journal: Math. Comp. 24 (1970), 529-536
- MSC: Primary 65.20; Secondary 41.00
- DOI: https://doi.org/10.1090/S0025-5718-1970-0273780-5
- MathSciNet review: 0273780