A new method for computing toroidal harmonics
HTML articles powered by AMS MathViewer
- by Henry E. Fettis PDF
- Math. Comp. 24 (1970), 667-670 Request permission
Abstract:
A method for computing Legendre functions of integer order and half-odd degree is presented. The method is based on the theory of quadratic transformation of the argument, and is a generalization of Gauss’ or Landen’s transformation for computing elliptic integrals.References
- A. Rotenberg, The calculation of toroidal harmonics, Math. Comput. 14 (1960), 274–276. MR 0115264, DOI 10.1090/S0025-5718-1960-0115264-4 E. B. Wright & P. I. Peterson, Brief Table of Ring Functions, NRL Memorandum Report 1969, U. S. Naval Research Laboratory, March 1966.
- Walter Gautschi, Computational aspects of three-term recurrence relations, SIAM Rev. 9 (1967), 24–82. MR 213062, DOI 10.1137/1009002 J. Wimp, Recent Developments in Recursive Computation, ARL 69-0104, Aerospace Research Laboratories, July 1969.
- Henry E. Fettis, Calculation of toroidal harmonics without recourse to elliptic integrals, Blanch Anniversary Volume, Aerospace Research Lab., U.S. Air Force, Washington, D.C., 1967, pp. 21–34. MR 0211582
- Henry E. Fettis and James C. Caslin, Tables of toroidal harmonics, I: Orders 0-5, all significant degrees. , Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force, Wright-Patterson Air Force Base, Ohio, 1969. ARL 69-0025. MR 0245169
- I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press, New York-London, 1965. Fourth edition prepared by Ju. V. Geronimus and M. Ju. Ceĭtlin; Translated from the Russian by Scripta Technica, Inc; Translation edited by Alan Jeffrey. MR 0197789
- Wilhelm Magnus and Fritz Oberhettinger, Formeln und Sätze für die speziellen Funktionen der mathematischen Physik, Springer-Verlag, Berlin, 1948 (German). 2d ed. MR 0025629
Additional Information
- © Copyright 1970 American Mathematical Society
- Journal: Math. Comp. 24 (1970), 667-670
- MSC: Primary 65.25
- DOI: https://doi.org/10.1090/S0025-5718-1970-0273786-6
- MathSciNet review: 0273786