Some observations on interpolation in higher dimensions
HTML articles powered by AMS MathViewer
- by R. B. Guenther and E. L. Roetman PDF
- Math. Comp. 24 (1970), 517-522 Request permission
Abstract:
This paper presents a method, based on successive displacement of the coordinates, both for finding suitable interpolation points and for constructing the interpolating polynomial for functions of more than one independent variable.References
-
W. Arntzen, W. E. Milne, N. Reynolds & J. Wheelock, Mathematics for Digital Computers. Vol. I: Multivariate Interpolation, WADC TR 57–556, Wright Air Development Center, Wright-Patterson Air Force Base, Ohio, February 1958 (ASTTA Document No. AD 131033).
- George E. P. Box, Fitting empirical data, Ann. New York Acad. Sci. 86 (1960), 792–816 (1960). MR 116431
- Philip J. Davis, A construction of nonnegative approximate quadratures, Math. Comp. 21 (1967), 578–582. MR 222534, DOI 10.1090/S0025-5718-1967-0222534-4 K. Pearson, Tables of the Incomplete $\Gamma$-Function, Tracts for Computers, Cambridge Univ. Press, New York, 1922.
- J. F. Steffensen, Interpolation, Chelsea Publishing Co., New York, N. Y., 1950. 2d ed. MR 0036799
- Henry C. Thacher Jr., Generalization of concepts related to linear dependence, J. Soc. Indust. Appl. Math. 6 (1958), 288–299. MR 95577
- Henry C. Thacher Jr., Derivation of interpolation formulas in several independent variables, Ann. New York Acad. Sci. 86 (1960), 758–775 (1960). MR 116456
- Henry C. Thacher Jr., Numerical integration and differentiation of functions of several independent variables by an iterative procedure, J. Soc. Indust. Appl. Math. 11 (1963), 614–622. MR 156464
- Henry C. Thacher Jr. and W. E. Milne, Interpolation in several variables, J. Soc. Indust. Appl. Math. 8 (1960), 33–42. MR 117871
Additional Information
- © Copyright 1970 American Mathematical Society
- Journal: Math. Comp. 24 (1970), 517-522
- MSC: Primary 65.20; Secondary 41.00
- DOI: https://doi.org/10.1090/S0025-5718-1970-0275631-1
- MathSciNet review: 0275631