Trigonometric and Gaussian quadrature
HTML articles powered by AMS MathViewer
- by C. J. Knight and A. C. R. Newbery PDF
- Math. Comp. 24 (1970), 575-581 Request permission
Abstract:
Some relationships are established between trigonometric quadrature and various classical quadrature formulas. In particular Gauss-Legendre quadrature is shown to be a limiting case of trigonometric quadrature.References
- A. C. R. Newbery, Some extensions of Legendre quadrature, Math. Comp. 23 (1969), 173–176. MR 238492, DOI 10.1090/S0025-5718-1969-0238492-4
- Eugene Isaacson and Herbert Bishop Keller, Analysis of numerical methods, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0201039
- Cornelius Lanczos, Applied analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1956. MR 0084175
- Walter Gautschi, Numerical integration of ordinary differential equations based on trigonometric polynomials, Numer. Math. 3 (1961), 381–397. MR 138200, DOI 10.1007/BF01386037
- G. Birkhoff, D. M. Young, and E. H. Zarantonello, Numerical methods in conformal mapping, Proceedings of Symposia in Applied Mathematics, Vol. IV, Fluid dynamics, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953, pp. 117–140. MR 0057637
- F. B. Hildebrand, Introduction to numerical analysis, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1956. MR 0075670
- Marvin Marcus, Basic theorems in matrix theory, Nat. Bur. Standards Appl. Math. Ser. 57 (1960), iv+27. MR 109824
Additional Information
- © Copyright 1970 American Mathematical Society
- Journal: Math. Comp. 24 (1970), 575-581
- MSC: Primary 65.55
- DOI: https://doi.org/10.1090/S0025-5718-1970-0275672-4
- MathSciNet review: 0275672