Cross-product cubature error bounds
HTML articles powered by AMS MathViewer
- by Frank G. Lether PDF
- Math. Comp. 24 (1970), 583-592 Request permission
Abstract:
This paper is concerned with cross-product cubature rules. We use Sard’s Kernel Theorem $[10]$ to express the cross-product cubature error in terms of one variable kernels. This simplified representation of the error is then used to derive cubature error bounds analogous to those obtained by Secrest and Stroud $[13]$, for quadrature rules.References
- A. C. Ahlin, On error bounds for Gaussian cubature, SIAM Rev. 4 (1962), 25–39. MR 152125, DOI 10.1137/1004004
- Robert E. Barnhill, An error analysis for numerical multiple integration. I, Math. Comp. 22 (1968), 98–109. MR 226852, DOI 10.1090/S0025-5718-1968-0226852-6
- M. M. Chawla, On the estimation of errors of Gaussian cubature formulas, SIAM J. Numer. Anal. 5 (1968), 172–181. MR 224280, DOI 10.1137/0705014
- Philip Davis, Errors of numerical approximation for analytic functions, J. Rational Mech. Anal. 2 (1953), 303–313. MR 54348, DOI 10.1512/iumj.1953.2.52016
- Philip J. Davis, Interpolation and approximation, Blaisdell Publishing Co. [Ginn and Co.], New York-Toronto-London, 1963. MR 0157156 I. A. Èzrohi, "General forms of remainder terms of linear formulae in multi-dimensional approximate analysis. I, II," Mat. Sb., v. 38(80), 1956, pp. 389–416; v. 43(85), 1957, pp. 9–28. (Russian) MR 18, 32; MR 19, 1199. F. G. Lether, Cross-Product Cubature Error Estimates, Ph.D. Thesis, The University of Utah, Salt Lake City, Utah, 1969. J. N. Lyness & B. J. J. McHugh, "Integration over multidimensional hypercubes. I: A progressive procedure," Comput. J., v. 6, 1963, pp. 264–270. S. M. Nikol’skiĭ, Quadrature Formulas, Fizmatgiz, Moscow, 1958. (Russian)
- Arthur Sard, Linear approximation, American Mathematical Society, Providence, R.I., 1963. MR 0158203
- D. D. Stancu, The remainder of certain linear approximation formulas in two variables, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 1 (1964), 137–163. MR 177240
- Frank Stenger, Error bounds for the evaluation of integrals by repeated Gauss-type formulae, Numer. Math. 9 (1966), 200–213. MR 205462, DOI 10.1007/BF02162084
- A. H. Stroud and Don Secrest, Gaussian quadrature formulas, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966. MR 0202312
Additional Information
- © Copyright 1970 American Mathematical Society
- Journal: Math. Comp. 24 (1970), 583-592
- MSC: Primary 65.55
- DOI: https://doi.org/10.1090/S0025-5718-1970-0275673-6
- MathSciNet review: 0275673