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On the Numerical Solution of the Diffusion Equation

By 0ystein T0denes

Abstract. A proof given by C. E. Pearson [1] for the asymptotic convergence of the

numerical solution of the diffusion equation is discussed, and found insufficient. A new,

direct proof is given. A method given by Pearson, for improving the numerical solution

when a discontinuity is present in the initial-boundary conditions, is considered in more

detail.

1. Introduction.   C. E. Pearson [1] has studied the numerical solution of the

system:

du(x, t)      d2u(x, t)

(la) —dt~ = ^dxT~'

(l.b) u(x, 0) = 0,        0 ^ x ^ 1,

(l.c) «(0,0=1)       />0>

(l.d) M(l,i)=oJ

with special emphasis on the effect of the discontinuity at the point (0, 0).

The system is approximated with the well-known formula

(2 a-v "»•.*+» — ">.* = p{0("i+i,t+i — 2«,.i+1 + «,_,.»+,)

+ (1 - 0)(ui+1.t - 2u,,t + «,_,,»)},

where p = At/Ax2, Ax = 1 /M, and 6 = §, and

(2.b) u,-,o = 0, j = 1,2, ••• , M - 1,

(2.C) Mo.o =  P, U0.k=l, *=1,2, •••,

(2.d) uMik = 0, * = 0,1,2, ••• .

The determination of the optimum value of P is Pearson's main problem. The prob-

lem is divided into two parts:

(a) Showing that the effect of P diminishes as k increases, this leads to a considera-

tion of the asymptotic convergence.

(b) The value of P is then determined to satisfy an accuracy criterion for "small" k.

2. Asymptotic Convergence.   This problem is treated by Pearson as follows: An

exact solution of Eq. (l.a) with initial condition

(3) u(x, 0) = 0,       x > 0,
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and boundary condition (l.c) (semi-infinite rod), is found to be

u(x, t) = erfc (x/2y/t).

The first two terms of the asymptotic expansion of erfc (x/2y/t), when i —> o°. is

erfcfe),rJ-^F
i.e..

(4) u(x, t) ~  1 -      *1/2-
,_. (7TÍ)

Secondly, a solution of the discrete analogue of the system (1 .a), (3), (1 .c), i.e., of (2.a),

with the initial condition

(5) u,,a = 0,        } = 1,2, ••• ,

and boundary condition (2.c), is found by a sine transform. The first two terms of the

asymptotic expansion of this solution, when k —* <», is found (by a steepest descents

technique) to be:

yAx
(6) Uj,k   <~    1    - A,sl/2-

*_„ (irkAt)

From (4) and (6) Pearson concludes "• • • that the numerical solution given by Eq. (2)

(here Eq. (2.a)) will normally become asymptotically correct, as n (here k) grows."

From Pearson's paper, it is evident that the problem he wants to solve is whether

the solution of the system (2) converges asymptotically to the solution of the system (1).

The changes of the initial and boundary conditions, represented by (3) and omission

of (l.d), and by (5) and omission of (2.d), done for the sake of computational con-

venience, also results in changes of the respective solutions.

The boundary conditions have a decisive effect on the asymptotic convergence,

see, e.g., Parker and Crank [3], therefore, one cannot from

lim Híit = lim «O'Ax, kAt),

where w,-t is the solution of the system (2.a), (5), (2.c), and u(x, f) is the solution of the

system (l.a), (3), (l.c), conclude that a similar relation holds with an arbitrary other

set of boundary conditions. Whether such a conclusion holds for special changes on

the boundary conditions is an open, unanswered question. Therefore, the proof for

the asymptotic convergence of the solution of the system (2) to the solution of the

system (1) is not sufficient.

The problem can be settled in a direct way, as follows: From Carslaw and Jaeger

[2, p. 99], we find the solution of the system (1)

2   °°  1
(7) u(x, /)=1— x-¿Ji~ exP (—iV20 sin iiTX

t <_, i

and the stationary solution, U(x), is

(7.a)     • U(x) = lim u(x, t) = 1 - x.

The system (2) may be written in matrix vector notation as follows:
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Am, = Buo + b' + b,

A\xk+l = Buk + b,       k = 1, 2, •

where

A = I + peQM-x,        B = / - p(l - 0)O.W_,,

-2        1        0        0        .0

1     -2        1        0        .

0 0¡>

: 1-2        1

0     .     0 1     -2

b' = P6(P - 1, 0, ••• , Of,

b = p(l,0, ••• ,0)r,

u* = (uuk, u2,k, • •• , i/A/-i.i)r-

It should be pointed out that P is introduced in the system by b'.

The eigenvalues of QM-i'-

K(Qit-i) = 4 sin2 (mr/2M),        n = 1, 2, • • • , M - 1.

The eigenvalues of A :

\n(A) =  1 + p04 sin2 (mr/2M) ¿¿ 0,        n = 1, 2, ■ • • , M -  1,

i.e., vi is nonsingular and A'1 exists. By repeated substitution, we get

(8) ui+1 = (A~lB)k+1Uo + (A-'BfA-'b' + £ (A-'BYA-'b.

By consideration of eigenvalues, the matrix (A 1B — I) is easily found to be non-

singular, and so (A~'B — TV"1 exists. From (8):

ut+1 = (A-lB)k+1Uo + (A^BfA-'V + (A'lß)k+
(9)

(A~lBf = (A~lB), thus, the spectral radius

a(A'lB) = max \\„(A~lB)\,

(A~'B - I)
A~lb,

a(A '5) = max

1 — p(l — 0)4 sin2 —

1 + p64 sin2
2M

< 1

when | = 0 = 1.

Thus, when § ^ 0 ^ 1, the solution of (8) converges to the stationary solution, TJ,

U = limu* = -(A~'B - I)A~lb = -Q~J-ib.
*-.» P
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Since Qm-\ is nonsingular, there is a one-one correspondence between U and b, and

the equation above is written:

pQm-JJ = b.

This constitutes a set of difference equations that is easily solved with respect to the

components of TJ, giving

U = (1 - Ax, 1 - 2Ax, • • • , 1 - (M - l)Ax)r.

This is seen to be the discrete analogue of the stationary solution of the system (1),

given by (7.a), and so, the asymptotic convergence is proved.

3. Solution Near the Singularity. The solution of the difference system (2),

given by (9), shall now be developed in more detail by an eigenvector expansion,

and is, at first, written in the following form:

ut = U-1B)*(uo - U) + (A^Bf^A-'b' + TJ.

The eigenvectors of Qu-X, y„

( .   me      .    .me . me\T
y„ = ^sin-,S.n2-,...,Sin(M-l)-j,

constitute a basis.

The expansion involves the summation of the series ^*V n sin nß, which is per-

formed by integration with respect to ß, complex representation of cos nß, summation

of geometric series, and differentiation with respect to ß.

u,.k(P) = 1 - jAx - Ax  ]T
i-1

(10)

1 - p(l - 0)4 sin2 ^

1 + p04 sin2 j^

lie     .     . iie
COt8jMSmJM

jr_.il - p(l - 0)4sin2T^-J
L i  oít>       i\a     V J_2A/7 .     ne   .     . ne

+ 2Pe(P - 1)A*  2_ -7-T7-      sin -sin;-,
¡-i I, n.   . 2   iV V MM

(1 + P04sin2—j

where «,,t is written as a function of P. We note the analogy between this formula,

when P — 1, and the formula (7). The optimum value, Pu of the parameter P, is

determined by Pearson by minimizing the error vector

(ID ||tt, - -,(/>,)!| = min ||tt, - Ul(P)||,
p

where the Euclidean norm is taken, and

üt = (u(Ax, kAt), u(2Ax, kAt), ■•■ , u((M - \)Ax, kAt))T.

Actually, what is done is introducing a parameter P into the numerical solution

and choosing some optimum value for it. The parameter is given a strong connection

to the singular point (0, 0). Thinking of the many other ways a correcting parameter

could be introduced, it is not a priori evident that the connection between P and the

point (0, 0) is specially attractive.
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Formula (10) reveals that the parameter results in an additive "correction term".

To discuss the features of this term in more detail, define

_»,.»,       j = 1,2, ■•■ , M - 1,       k = 1,2, ••• ,

by

uf..{P,,.) = -O'Ax, fcAi).

(The "best way" of introducing a correcting parameter, P, would be one for which

P,,i is constant.)

In analogy to (11), we defined Pk,k = 1,2, • • • , by

II-» - MPk)\\ = min ||fi, -o_(i*)||.
p

The distribution of P,,., k = I, 4, 9, j = 1, 2, • • • , 13,

A-*   —   JÖÖ   » Af   =    10000   » "   =    2 »

is reported roughly on Fig. 1.

-**   ~~ 100    '       -^*   ~~   10000  '       "   —   2

Figure 1
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From Fig. 1, it is seen that the inequality, 0 = P,,» = 1, is not fulfilled (contrary

to Pearson's supposition), and that PUi is far from being constant.

0.816       0.889       0.917       0.928       0.935 0.945

A.Y

Table 1

Ai   =   TñS

From the table above, it is seen that Pk is not constant, i.e., the value of P that,

minimizes the Euclidean norm of the error vector for k = 1, does not minimize the

norms of the error vectors for k = 2,3, • • • . (This is, of course, not surprising.) How-

ever, noting that the multiplicative term, g¡,k, in (10),

8i.k Ax  £

1 - p(l - 0)4 sin'"
2M

1 + p04 sin2
2M

ne     .        ne
sin tt;sm j tt;2M 2M

diminishes as k and /or j increase, the value of P should become less important as k

and/or j grow. To investigate this more closely, the effect of choosing P = 1 (the

a priori most "natural" choice) is compared to the effect of choosing P = />,. Define

e,.k(P) = u(jAx, kAt) - Ui.k(P) = 2p6gi,k(Pi,k - P).

The results for k = 4 are reported in the following table.

J .¿Pi) e,.4(l)

1

2

3
4

5
6

7

8

9
10

11

0.0027
0.0040
0.0043
0.0031
0.0011

-0.0004
-0.0013
-0.0011
-0.0007
-0.0004
-0.0002

-0.0008
-0.0020
-0.0017
-0.0023
-0.0022
-0.0022
-0.0022
-0.0016
-0.0009
-0.0005
-0.0002

Table 2
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In the case above, it would be rather hard to decide what value of P should be

chosen. For k > 4, P = 1 would, in a way, be better than P = Pu whereas, for

k = 1, 2, 3, P = P, would, perhaps, be better than P = 1. Similar results hold for

other values of Ax and Ai.

In conclusion, it should be difficult to find an adequate criterion under which

P = P,, generally, is a better value than, for example, P = 1.

The calculation of Pik and Pk were carried out on the IBM 360 of the University

of Bergen, using double-precision FORTRAN programs.
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